			THURSDAY, JUNE 13					
10:00 AM - 11:30 AM								
Poster Board Number	Abstract ID	Presenter	Title					
	TRACK 4: MPS in toxicology and drug development							
277	4.5	v = 11	SESSION: 4.1 MPS for cell and gene therapy development					
277	15	Yung-Te Hou	Effects of tannic acid on liver function in a small hepatocyte—based detachable microfluidic platform					
278	121	Thierry Poumeyrol	Human Brain Organoid-on-Chip platform to improve organoid reproducibility and scalability for pharmaceutical studies					
279	162	Passley Hargrove-Grimes	Integrating microphysiological systems and extracellular vesicle-based technologies to advance regenerative medicine					
280	253	Hajime Miyashita	Medium Condition Maintainable Microphysiological System (MCM-MPS) for Continuous Drug Concentration Simulation in Pharmacological Studies					
281	308	Scott Heyward	Optimization of siRNA Delivery in a Long-Term Hepatic Micropatterned Co-Culture (HEPATOPAC)					
282	526	Marisa Meloni	VitroScreen ORA® cartilage system: homeostatic and inflammatory responses					
283	563	Yeju Jeong	The neuroprotective effect of Neural stem cells-derived exosomal miRNA in Parkinson's disease					
284	631	Bokyong Kim	Efficacy of human umbilical cord blood-mesenchymal stem cells on LPS-induced acute lung injury model using a commercial lung-on-a-chip					
		SESSION	N: 4.3 MPS for drug discovery, from target identification to candidate selection					
285	19	Takeshi Hori	Human placental barrier MPS generated with human placental stem cells.					
286	30	Emmanuel Guedj	Recapitulating Human-Relevant Pharmatoxicologic Mechanisms of Troglitazone and Rosiglitazone in a Single Experiment using Bulk RNA Sequencing of Human 3D Liver Microtissues					
287		Daiju Yamazaki	Examination of medium for co-culturing human hepatocytes and engineered heart tissue on MPS					
288		Aaron Schatz	Optimizing drug testing using a patient-derived colorectal cancer-on-a-chip model					
289		Clara Ramón-Lozano	Exploration of hepatotoxic mechanisms in human-like liver microtissues					
290		Nicholas Coungeris	Identification of a potential therapeutic compound for Rett syndrome using a highly homogenous human iPSC-derived cortical organoid screening platform					
201	7.4	W-4 A-:	Designatural, for the development of in vitro tooks for the development of the respectite groups for your clock dischards another.					
291		Kotaro Aoi	Basic study for the development of in vitro tests for the development of therapeutic agents for non-alcoholic steatohepatitis					
292		Ananth Kumar Kammala	Development of a 3D-printed device for electrophysiological measurement of uterine muscle contractions					
293 294		Julien Roth	Developing and Qualifying Human in Vitro Models of Neurotoxicity					
294		Yoshiyuki Arata	Evaluating On-Target/Off-Tumor Toxicity of T-cell Engagers Using Co-cultured Organoids and Immune Cells A microfluidic platform for high throughout conscision of vascularized tumor models					
295	106	Chia-Hsien Hsu	A microfluidic platform for high-throughput generation of vascularized tumor models Advanced applications of the Intestinal Explant Barrier Chip (IEBC): Ex vivo gut-on-a-chip research for preclinical					
296	126	Evita van de Steeg	pharmacokinetic drug development and host-microbe interactions					
297	128	Katja Graf	A human in vitro two-organ on chip approach (lung-liver) for toxicological investigations: A case study using Paraquat					
298	131	Paul Vulto	Patient derived HCC on-Chip models recapitulate Sorafenib and Lenvatinib induced vascular responses					
299	132	Marize Valadares	Potential use of dental stromal tissues for developing neurospheres used in MPS for drug discovery					
300	145	Kevin Pollard	Human Microphysiological Model of Afferent Nociceptive Signaling					
301	156	Oksana Sirenko	Transforming complexities of 3D biology into translatable science: Automation of 3D organoid culture and organoid analysis.					
302		Timothy Leach	Airway Organ Tissue Equivalent Platform for Modeling Chlorine Gas Toxicology and Medical Countermeasure Efficacy					
303		Terry Riss	Choosing and validating assay systems to interrogate 3D cell culture models					
304	195	Salvi Kambarova	AC/DC Stimulation of hiPSC Neuron Co-Cultures Using an Amped-Up 3D Printed Platform					
305	205	Kazuhiro Tetsuka	Modeling gastrointestinal inflammation in qualified human gut organoids from induced pluripotent stem cells					
306	216	Freya Woods	Deciphering toxicological dynamics in the bone marrow microphysiological system (BM-MPS) through inference of differentiation trajectories					
307	221	Shweta Bendre	Liver-on-Chip Model: Advancing toxicology studies for enhanced liver toxicity investigations					
308	223	Lea Lara de Maddalena	AXILD model: Efficacy testing for new clinical drug candidates to treat pulmonary fibrosis					
309	227	Xiaobo Han	Predicting Peripheral Neurotoxicity on Soma or Axon through Morphological Deep Learning and Electrical Measurements Using an In Vitro Microphysiological System					
310	232	Colin Brown	A Sensitive Podocyte-Specific Nephrotoxicity Assay for Drug Development Applications in a Primary Model of the Glomerular Filtration Barrier					
311	266	Michelle Ballabio	Unveiling Drug Responses in Liver Spheroids: Multiplexing 3D Cell-Based Assays and Imaging in a Microwell Platform					
312	274	Maria Clapés Cabrer	Advanced 3D Cell Models for Next Generation Therapeutics: Standardized Organoid Co-Cultures and Assays in Microwell Plates					
313	290	Nadeem Wajih	Bromelain as a Potential Adjuvant Therapy for Appendiceal Cancer: Cytotoxic and Mucolytic Effects in Patient-Derived Tumor Organoids					
314	302	Bill Murphy	A Model of Human Neuroinflammation utilizing Induced Pluripotent Stem Cell-Derived Neural Organoids Incorporating Microglia					
315		Martha Iveth Garcia	Evaluation of drug-induced QT prolongation using cardiac organ-on-a-chip					
316	310	Anicc Harriot	Microphysiological model of Duchenne muscular dystrophy for validating microtubules as a therapeutic target					
317	317	Fong Cheng Pan	Generation of mature and functional hepato-biliary organoids from pluripotent stem cells					
318	328	Gwen Fewell	Blood-Brain-Barrier-on-Chip models for more predictive in vitro modeling of Receptor Mediated Transcytosis					

Poster							
Board	Abstract						
Number	ID	Presenter	Title				
	SESSION: 4.3 MPS for drug discovery, from target identification to candidate selection						
319	331	Ashley Helser	Microphysiological model of the osteochondral unit for studying OA inflammation				
			RepliGut 2D Crypt Platform Enables Long-term Drug Treatment and Washout Studies on Proliferative and Differentiated				
320	336	Elizabeth Boazak	Human Transverse Colon				
321	341	Kim Haupt	Bioluminescent Tools for Functional Characterization of Liver Models				
322	360	Aakash Patel	Development of a human multi-organ microphsyiological comorbidities model to investigate geriatric diseases				
323	414	Anish Mahadeo	Modeling renal clearance of ochratoxin-A in a kidney microphysiological system				
324	432	Paul Vulto	Modelling Chemotherapy-InducedPeripheral Neuropathy on-a-chip				
325	447	Rui Sun	Comparative transcriptomic analysis and potential applications of a proximal tubule kidney-chip model				
326	452	Yuzuru Ito	Microphysiological Systems to Facilitate Assessment of Drug Absorption Kinetics in Gut				
327	454	Charlie Childs	Physiologically Relevant Human Intestinal Organoids for 3D Drug Screening				
328	474	Aiping Bai	Establishing a hepatocyte on-Chip 3D culture system to predict drug toxicity				
			Optimization of in vitro hepatocytes and macrophage culture system for screening of immune-mediated drug-induced liver				
329	478	Sangho Lee	injury				
330	491	Massimiliano Berardi	Large scale, multiparametric physical in situ characterization of cancerspheroids by nanoindentation				
331	501	Gauri Kulkarni	Comparing Different Culture Formats of Primary Human Hepatocytes in A Scalable Liver MPS Platform				
			Automated Transepithelial Electrical Resistance (TEER) Measurements Allow for Rapid Screening of the Gastrointestinal				
332	506	Subhra Nag	Toxicity Profile of Therapeutics				
333	524	M Miedel	Effects of Rheumatoid Arthritis and Cancer Biologics on Liver Toxicity in a Human Biomimetic Liver Microphysiology Model				
334	F22	Ougany Dasgunta	Human vascularized organ-on-chip system recapitulates off-target toxicity of antibody-drug conjugate gemtuzumab ozogamicin				
334	333	Queeny Dasgupta	Using the microphysiological system PREDICT96-ALI to gain deep insights into human tissue responses to physiological or				
335	545	Christine Fisher	xenobiotic stresses				
336	F76	Victor Zhang	Altering type III collagen in the myofibroblast microenvironment for studying peritendinous scarring and fibrosis in a human Tendon-on-a-Chip (hToC)				
337		Ludovico Buti	Evaluation of 3D human intestinal organoids as a platform for EV-A71 antiviral drug discovery				
337	360	LUGOVICO BULI	The prolonged 3D cell culture mimics the gene expression profile and proteomics of pancreatic tumorsin vivo, and provides				
338	583	Marcin Krzykawski	the reliable tool for an evaluation of anti-cancer drug testing				
- 555	303	War em Krzykawski	and consider to the an extraction of an extraction and greating				
339	593	Agnes Badu-Mensah	Towards Developing a Human Physiology-Relevant Intestinal Model for Mechanistic Assessment of Oral Bioavailability				
340	644	Dennis McDuffie	Mitigating hepatic insulin resistance on a commercially-available MPS				
341	646	Cécile Thion	Innovative workflow for drug response studies on single 3D models combining spheroONETM and Incucyte®.				
342	648	Charles Havnar	Organoid Tissue Microarrays: An Improved FFPE Processing Approach for In Vitro Model Readouts				
343	656	Aisha Amari	Facilitating combination therapy studies on-a- chip with patient-derived 3D tumour models				
			Fitty.jl: A fast and modern nonlinear least squares regression package in Julia for data fitting to biological models, with				
344	657	Raibatak Das	Bayesian bootstrap to estimate parameter posterior distributions and credible intervals				
			High throughput drug response profiling of primary colorectal tumor models using a novel automation workflow and Al-				
345	658	Evan F Cromwell	assisted image analysis				
346	660	Anne Yau	Development of Injectable Janus base Nanomatrix (JBNm) for Cartilage Tissue Chip in maintaining Long-term homeostasis				

			THURSDAY, JUNE 13			
4:30 PM - 6:00 PM						
Poster						
Board Number	Abstract ID	Presenter	Title			
Number	IU	riesentei	TRACK 4: MPS in toxicology and drug development			
	SESSION: 4.4 MPS for drug safety testing					
			3D-printed humanized feto-maternal interface tests exosomal delivery of anti-inflammatory Interleukin-10 (IL-10) to reduce			
347	609	Leah Saylor	infection-associated inflammation Effects of 6PPD-Quinone, the Transformation Product of a Ubiquitous Vehicle Tire Rubber Additive, in Primary Human Liver			
348	621	Qiang Shi	Spheroids			
349	622	Carolina Lucchesi	Advanced 2D and 3D Cardiomyocyte-based Models for Use in Drug Discovery			
350	642	May Freag	Employing a gut-on-a-chip model for safety evaluation of T cell-based therapies			
351	640	Madhu Nag	On the relevance of human liver microtissues for the detection of hepatoxic drugs early in the drug development process			
352		Seyoum Ayehunie	A novel vascularized metastatic colorectal cancer tissue model for drug testing			
353		Anjli Venkateswaran	Microphysiological System for Predictive Genotoxicity and Mutagenicity of Drugs			
			N: 4.5 In vitro clinical trials and precision medicine: real, digital and MPS twins			
354	114	Aruni Premaratne	A liver organ-chip model to evaluate hepatotoxicity of drugs			
355	120	Camilla Ceroni	High-throughput single organoid swelling assay for personalized evaluation of CFTR modulators in patient-derived rectal			
333	136	Carrilla Cerolli	organoids New Approach Method (NAM) to Determine the Pharmacological Parameters of Exosomal IL-10 using Fetomaternal Interface			
356	140	Ramkumar Menon	Multiorgan MPS			
357	155	Ana Mesic	Modelling the Space of Disse on a Microfluidic Chip for Drugs Hepatotoxicity Screening			
			PEAR-TNBC: A multi-centre observational clinical trial to predict patient treatment response by assessing drug efficacy on 3D			
358	182	El Li Tham	immune-microtumour cultures derived from core needle biopsies of triple negative breast cancer patients undergoing neoadjuvant therapy.			
338	102	Li Li Tilalii	Modeling the next-generation of fusion-negative rhabdomyosarcoma 3D-organoids to predict effective drug combinations: a			
359	244	Mariana Costa	proof-of-concept on cell death inducers			
360	248	Katharina Schimek	A predictive multi-organ-chip platform for cancer precision medicine using automated high-content substance testing			
264	262		U. C. C. Aberta deba and an elimination and an elimination and a constitution and a description of the leading to a constitution of the constituti			
361	262	Hendrik Erfurth	How Synthetic data, automation and continuous data acquisition enable progress towards a digital twin in preclinical trials Development of a simultaneous evaluation system for anticancer drug sensitivity and side effects using microphysiological			
362	437	Yuki Kobayashi	systems and 3D organoid culture method			
			Establishment of an anti-cancer drug sensitivity assessment system using microphysiological systems and feline breast cancer			
363	445	Honoka Hashizume	organoids			
			SESSION: 4.6 MPS to define physiologically-relevant doses Human-Relevant Aerosol Generation and Exposure In Vitro – Respiratory Toxicity and Systemic Effects tested by the			
364	7	Kasper Renggli	HUMIMIC-InHALES Platform			
365	127	Chrisna Gouws	Small cell lung cancer mini-tumor models as a tool for drug development and screening			
366		Kenta Shinha	Liver microphysiological system based on kinetic-pump integrated microfluidic plate (KIM-Plate) for hepatotoxicity test			
367 368		Janny Pineiro-Llanes Alicia Henn	Intestinal organotypic model to study the impact of trisomy 21 on drug-metabolizing enzymes Safety without a net: Culturing cells for MPS in controlled conditions without antibiotics for better prediction			
369		Evita Mulder	From intestinal organoids-on-chip to multi-organ-on-chip: validation of drug absorption and metabolism			
			Evaluating the Hepatotoxicity of Cannabidiol, Cannabinol, Cannabichromene and Cannabigerol Using a Human Quad-Culture			
370	313	Ben Swenor	Liver-Chip			
371	275	Nicolas Butelet	Development of iPSC-derived Microphysiological Systems Platforms for Drug Discovery, Neurotoxicity Assessment, and Drug Mechanism of Action			
371		Saskia Schmidt	Development of a "plug & play" microphysiological system to mimic liver fibrosis in vitro			
	527		Metabolic and Proteomic Profiling of Organophosphate Chemical Warfare Agent exposure on CNBio Human Liver-on-a-Chip			
373	359	Erin Gallagher	without DMSO			
274	440	Ko Hu	Hepatotoxicity evaluation in repeated doses using on-chip perfusion MPS (KIM plate) with membrane-based direct			
374 375		Ke Hu Mridu Malik	oxygenation Toxicity and efficacy testing of a novel stress reliever in a multi-organ microphysiological system			
3/3	302	IVIII IVI IVI IVI	Aerosol Exposure at the Air-Liquid Interface of Human Lung Organotypic Cultures using VITROCELL™ Continuous Flow			
376	579	Mary McElroy	Inhalation System			
			Differential Metabolism in Microphysiological Systems for Evaluation of Efficacy and Off-target Toxicity for the NK-1			
377	589	Gabriel Kaatz	Antagonist Tradipitant Food, cosmetics and consumer products' industry experience in MPS implementation			
378	142	Julia Kühnlenz	Food, cosmetics and consumer products' industry experience in MPS implementation Evaluation of a 3D blood-brain barrier transport assay for an exposure-related neurotoxicity assessment			
379		Kazunori Shimizu	Functional evaluation of food ingredients using human skeletal muscle MPS			
380		Katharina Nitsche	A liver- on- chip to evaluate bile acid secretion for the use in a Next- Generation Risk Assessment			
381	632	Xiaoqing Li	Evaluation of in vitro human placental barrier models for assessing drug toxicity on placenta immunity (maternal IgG transfer)			

_						
Poster						
Board Number	Abstract ID	Duccoutou	Title			
Number	טו	Presenter	Title			
	SESSION: 4.8 MPS to model neurodegeneration					
		_	Completing The Circuit: Building a Same Donor Human iPSC-Based Neuromuscular Junction Model from Schwann Cells, Motor			
382	602	Vincent Truong	Neurons, and Skeletal Muscle			
			Evaluating the neuromuscular pathology in Alzheimer's disease from familial mutations by utilizing a human iPSC-derived in			
383	654	Akhmetzada Kargazhanov	vitro functional NMJ model			
384		Nathiau Vinkan	Evaluation of functional candidate biomarkors of non-genetavic benetocarsing enicity in human liver enhancid on cultures			
385	-	Mathieu Vinken Alastair Stewart	Evaluation of functional candidate biomarkers of non-genotoxic hepatocarcinogenicity in human liver spheroid co-cultures Influence of tumour microenvironment on the activity of breast cancer therapeutic agents			
385	9	Alastair Stewart				
386	20	lang Saah Chai	Imprinted large-area ion-permeable Nafion patterns integrated with an electric cell-substrate impedance sensing system for high-throughput in vitro cancer cell apoptosis study			
300	20	Jong Seob Choi	Standalone cell culture microfluidic device (SCCMD) for proximal tubule microphysiological system for improving usability and			
387	202	Hiroshi Kimura	throughput			
388		Sohyun Park	A lung microphysiological system platform for methylisothiazolinone-caused inhalation toxicologic model			
300	211	Sollyuli Park	An automated and multiplexed liver fibrosis screening assay on a microfluidic liver model that replicates the cellular			
389	290	 Will Allen	composition and organization of the hepatic lobule			
390	1	Kristina Bartmann	Human-based New Approach Methodologies for Developmental and Adult Neurotoxicity Testing in vitro			
391			An ex vivo female reproductive system simulates the ovarian control of endometrial decidualization			
231	354	Tingjie Zhan	All ex vivo remaie reproductive system simulates the ovarian control of endometrial decidualization			
392	380	Moo-Yeal Lee	Dynamic culture of cerebral organoids using a pillar/perfusion plate for the assessment of developmental neurotoxicity			
393		Hiroaki Kii	Towards A Standard :Al and Automation in Live-imaging Applications for Microphysiological Systems.			
394		Kevin Healy	A Novel High Throughput Cardiac Microtissue Model for Drug Screening and Compound Discovery			
334	334	Reviii Healy	A Novel High Hilloughput Cardiac Microtissue Model for Drug Screening and Compound Discovery			
395	552	Navere Taebnia	3D Printed Microperfused and Mesoscale Human Liver Model with Physiological Oxygen Gradient and Hepatic Zonation			
396		Jinchul Ahn	Microchip-based assay to assess vascular and neuronal regeneration triggered by photo-crosslinkable peptides			
390	330	Jilicital Allii	ivite ochip-based assay to assess vascular and neuronan egeneration triggered by photo-crossinikable peptides			
397	560	 Seung-cheol Shin	Manufacturing quantifiable endometrium organoids by co-culturing fibroblast in high-throughput analysis-optimized platform			
398		Breanne Kincaid	Heavy metal mixture elicits less than additive neuronal impairment in human cortical microphysiological system			
399			A transformer-based multimodal molecular foundation model for organoid drug efficacy evaluation			
555	588	Kai Huang				
400	610	David Kukla	Comparison of metabolic intrinsic clearances in complex in vitro hepatocyte models: Are single donors adequate to address interindividual variability in response?			
400	910	Daviu KUKIA				
401	C47	Siamma David	A New Approach Methodology (NAM) using 3D human iPSC-derived neural organoids to screen for developmental neurotoxicity hazard			
401	047	Sierra Boyd	neurotoxicity nazaru			