	TUESDAY, JUNE 11						
	10:00 AM - 11:30 AM						
Poster Board	Abstract						
Number	ID	Presenter	TRACK 1: MPS for (patho)physiology				
	SESSION: 1.1 MPS for cardiovascular diseases						
1	71	Jingyi Zhu	Unraveling Cardiac Device Infection: Tissue Engineered Blood Vessels as a Microphysiological Model				
2	81	Bettina Lickiss	Contractility-based pharmacological characterization of hiPSC-derived atrial and ventricular cardiomyocytes for preclinical toxicity testing				
3	104	Pimonrat Ketsawatsomkron	p-cresol compromises vascular barrier and induces endothelial cytotoxicity and inflammation in 3D human microvessel-on-a-chip				
4	162	Alessia Moruzzi	SpheroFlow: a user-friendly Heart-on-Chip integrating hiPSC-derived cardiac 3D microtissues amenable for multi-parametric non-invasive monitoring				
5	1	Kevin Healy	Vascular Microphysiological System as an Organ Preservation Testbed				
	320	incom rically					
6	570	Kevin Shani	Modeling Flecainide Response in Catecholaminergic Polymorphic Ventricular Tachycardia with Microphysiological Systems				
7	626	Aaron Rogers	Biomanufacturing in Low Earth Orbit				
8	+	Christopher J Hatch	3D vascular niche alters endothelial-stromal crosstalk to support vessel formation				
9	662	Sabrina Staples	Transluminal endothelial bridge formation in a microfluidic vessel-on-chip: critical role of cytoskeletal tuning				
	1		SESSION: 1.2 MPS for pulmonary diseases				
10	44	Yun-Chen Wu	A tape-assisted approach to fabricate membrane-containing devices for cultured cells performing breathing movements				
11	67	Jeffrey Morgan	A 3D In Vitro Model of Fibrosis: Measuring the Pathophysiological Biomechanics of the ECM.				
12	99	Thomas Shupe	Microengineered Human Organ Tissue Equivalents for the In Vitro Study of Drugs, Toxins and Infectious Diseases				
13	183	Deborah Ramsey	Small airway lung-on-chip model for evaluating neutrophil-mediated damage in inflamed lung tissues.				
14	192	Satoshi Ikeo	'Portable' human iPSC-derived alveolar organoids mimicking physiological functions in microfluidic system				
15	231	Marize Valadares	Lung-sens-on-a-chip model for evaluation of respiratory sensitizers aerosols: characterization and applicability.				
16	240	Lea De Maddalena	A novel alveolus-on-chip model of SARS-CoV-2 infection for pre-clinical application				
17	245	Variation Cha	Integrated adult tissue derived lung arganoid microphysiological system for new emerging infectious recoiratory dispasses				
17	245	Young-Jae Cho	Integrated adult tissue-derived lung organoid-microphysiological system for new emerging infectious respiratory diseases Alveolus-on-a-Chip As a Model Platform for Assessing Toxicity after Exposure to Flight-related Compounds via Custom				
18	322	McLendon Patrick	Soot/VOC Generation				
			A breathable multi-compartment lung-on-chip model to study the (patho)physiological relevance of biological hydrogels in				
19	442	Konrad Schmidt	dynamic conditions				
			Assessment of Drug Permeability across Healthy and Pathological Bronchial Epithelial: In vitro Organotypic systems vs.				
20		Janny Pineiro-Llanes	Immortalized cell line				
21	546	Madeline Eiken	Synthetic hydrogels to interrogate extracellular matrix deposition by alveolar organoids Macrophara expectated alveolar tissue injury and the appoints pyrophesis blockeds in influence infection revealed in a human				
22	661	Yuncheng Man	Macrophage-exacerbated alveolar tissue injury and therapeutic pyroptosis blockade in influenza infection revealed in a human lung alveolus chip				
	001	Tuneneng Wan	SESSION: 1.3 MPS for cancer research				
23	8	Yaling Liu	Vessel-supported Tumor Model on Chip for Therapeutic Evaluation				
24	29	Pedro Pinto	Microfluidic Prostate-Cancer Model to Study MicroRNA Secretions and Their Potential as Diagnostic Biomarkers				
			Alternative-to-animal lung adenocarcinoma model: Characterization, validation, and therapeutic insights using a spheroid				
25		Pooja Sawant	model				
26	47	Olivier UWISHEMA	Revolutionizing Neurotherapeutics: Blood-Brain Barrier-On-A-Chip Technologies For Precise Drug Delivery A Two-Step Approach to Biofabricating an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and				
27	55	Sirjana Pun	Drug Resistance in Human Glioblastoma				
28		Rachel Perez	Combining patient-derived tumor organoids and an organ-on-chip system to model colorectal cancer progression				
29	60	Hannah Graf	A standardized plug&play multi-organ chip connection to study interactions between tumor and lymphoid tissue				
30	88	Keqian Nan	Development of an ex vivo Image-Based Platform for Kidney Precision Immuno-Oncology				
31	95	Thomas Richardson	Development of hydrogels supporting liver immune-microtumors for functional precision medicine				
32	96	Curran Shah	combined influence of kras mutational status and peristaltic-like forces promotes tumor cell intravasation in organ on chip model of colorectal cancer				
33	122	Manyna Somova	Unveiling Molecular Dynamics of SARS-CoV-2 Spike Protein in the Renal epithelium using a Microphysiological approach (MPS)				
34		Maryna Somova Julia Alber	Real time imaging of treatment response in an immunocompetent tumor-on-chip				
35	1	Mariana Viso	Engineering Immune-driven Stromal Remodeling in Pancreatic Cancer within a PDMS-free MPS				
36	1	Sriram Bharath Gugulothu	Perfusable 3D Bioprinted tumor model for triple-negative breast cancer immunotherapeutics screening				
37		Gemma Nomdedeu-Sancho	Development of Skin Organoids as a Universal Platform for Skin Physiology, Injury, and Disease Modeling				
			Development of a vascular liver tumor model using a micro-dissected patient-derived tumor xenograft and a physiologically				
38	184	Yu-Hsiang Hsu	controlled MPS system				
39	199	Jose Antonio Reales-Calderon	Vascularization of Tumor Spheroids in the organiX System for Immuno-oncology Applications				
40	207	Giulia Amos	Towards a 3D hydrogel platform to study glioblastoma invasion in vitro				

Poster						
Board	Abstract					
Number	ID	Presenter	Title			
SESSION: 1.3 MPS for cancer research						
41	209	Chrisna Gouws	Establishing a doxorubicin-resistant triple-negative breast cancer spheroid model			
42	210	Atsuya Kitada	Parallel cultivation and evaluation of multiple vascularized tumor spheroids using a microfluidic device			
			Assessment of immune cell infiltration and cancer metastatic potential in Akura™ Immune Flow Chip - a microfluidic 3D			
43		Lisa Hoelting	spheroid system			
44		Thomas Sommermann	A microfluidic spheroid-on-a-chip model of vascularized pancreatic cancer for screening novel therapeutics			
45		Simon Sayer	An artificial immune niche and an in vitro tumor model enabled by high-resolution 3D printing			
46	<u> </u>	Kimia Abedi	A Bioprintable Model of Glioblastoma for Dissecting Cellular Mechanisms of Tumor Invasion and Drug Resistance			
47	292	Adeel Ahmed	A Patient-Specific, Organotypic Head and Neck Cancer Model For Personalized Medicine			
48	298	Angelo Massaro	Development of an In Vitro Colon Crypt Model to Study the Interdependent Relationship of Underlying Fibroblasts and Intestinal Epithelial Cells			
49	300	Arturs Abols	Testing of Patient-Derived Stem Cell Extracellular Vesicles Loaded with Cisplatin in a Personalized Lung-Cancer On-Chip Platform			
50	361	Shay Soker	Assessing the Effects of BAPN and Marimastat on Collagen Remodeling in an Ex-Vivo Tumor Organoid Model			
			Exploring the effects of fluid velocity and shear stress on the metastatic potential of circulating tumor cells in engineered			
51	372	Marie Floryan	organ-specific environments.			
52	378	Jerome Lacombe	ASTEROIDS- spheroid on chip to reproduce the lung tumor microenvironment			
53	423	Zhipeng Dong	Microfluidic blood-brain barrier chip for identifying repurposable drugs as glioblastoma chemotherapeutic agents.			
54	438	Haru Yamamoto	Single-cell analysis reveals characteristics of feline mammary tumor organoid derived from patients			
			Development of a 3D biomimetic microenvironment with engineered cell-matrix interactions to investigate in vitro			
55		Sadegh Ghorbani	glioblastoma cell behaviors			
56		Stephanie J Hachey	Targeting tumor-stromal interactions in triple-negative breast cancer using a human vascularized micro-tumor model			
57		Martin Stano	Advanced Microfluidic Platform for In-Vitro Sonodynamic Therapy Testing in Diffuse Midline Glioma Cell Models			
58	543	Rajul Bains	Vascularized tumor-on-a-chip to investigate immunosuppression of CAR T-lymphocytes			
	-67	C 14511 14 15	Microphysiological systems for investigating potential anti-angiogenic effects of xenohormetic phytochemicals in the context			
59	567	G. Wills Kpeli	of cancer Prostate energific membrane entiree's role in promoting and protecting tumor necessary during by next induced.			
60	607	Ngan Phung	Prostate-specific membrane antigen's role in promoting and protecting tumor-neovasculature during hypoxia-induced angiogenesis			
61		Emily Hutchison	A Microphysiological System to Model Chronic Hepatitis C Virus Infection and Hepatocellular Carcinoma			
62		HONGYAN YUAN	A Contraction—Reaction—Diffusion Model: Integrating Biomechanics and Biochemistry in Cell Migration			
63		Simona Campora	Primary breast tumor spheroids as a model for evaluating the impact of collagen matrix on drug penetration			
64	<u> </u>	Lisa F Horowitz	Microscale cancer models based on microdissected tumor "cuboids" that retain a complex tumor microenvironment			
65	666	Tran Ngoc Huyen Nguyen	Microfluidic Modulation of Tumor Microvasculature in Micro-dissected Cancer Tissues			
			SESSION: 1.4 MPS for rare diseases			
			A human Bone/Bone-Marrow-on-a-Chip system for preclinical investigation of new therapeutic approaches for Autosomal			
66	159	Nina Stelzer	Recessive Osteopetrosis			
67	213	Ilka Maschmeyer	Chronic Kidney Disease on-a-chip – a dual-perfused autologous proximal tubule model			
			Establishing a Vascularized and Perfusable in vitro Skin Model Using hiPSC-Derived Organoids for Disease and Infection			
68		Amelie Reigl	Research			
69		Jennifer Harder	Modeling podocytopathies using human kidney organoids			
70		Xiufang Guo	Development of human iPSC-skeletal muscle ALS model for pathogenesis study and therapeutic testing			
71	 	Kenneth Hawkins	Human iPSC-CMT2s Motoneuron Model for Characterization and Drug Development			
72	650	Jan Lichtenberg	Scalable 3D cell culture-based retinal fibrosis model for efficacy testing			
362	437	Yuki Kobayashi	Development of a simultaneous evaluation system for anticancer drug sensitivity and side effects using microphysiological systems and 3D organoid culture method			
363	445	Honoka Hashizume	Establishment of an anti-cancer drug sensitivity assessment system using microphysiological systems and feline breast cancer organoids			

TUESDAY, JUNE 11							
4:30 PM - 6:00 PM							
Poster Board Number	Abstract ID	Presenter	Title				
			TRACK 1: MPS for (patho)physiology				
	SESSION: 1.5 MPS to model pre- and postnatal conditions or reproductive disorders						
73	4	Sun Min Kim	Investigating oxygen-stressed placental vessel remodeling on a microfluidic 3D platform				
74	+	Odysseas Chaliotis	Microphysiological model of the placental barrier to study human Brucella infections and antibiotic treatment during pregnancy				
75	+	Samantha Holt	Development of an MPS model of innervated human endometriosis and adenomyosis lesions				
76	+	Linda Griffith	Engineering synthetic hydrogels for a microfluidic model of vascularized endometriosis lesions				
77	_	Shuo Xiao	An ex vivo mini-ovary model to study female reproductive biology, medicine, and toxicology				
78	+	Ana Collins-Smith	Microfluidic Device Successfully Replaces Traditional Models of Pregnancy Associated Drug Pharmacokinetic Studies				
79	617	Mi T. M. Soe	An ex vivo model for investigating the mechanisms of ovarian disorders induced by polycystic ovary syndrome (PCOS)				
	SESSION: 1.6 MPS to model neurodevelopment and neurodegeneration						
80	24	Mubeen Goolam	Modelling the embryo using stem cells: defining the roles of biochemical and physical cues in driving stem cell self- organisation.				
81	80	Stuart Prime	The multiplatform utility of human iPSC derived neuronal models to provide complex biological systems for drug discovery using Microphysiological systems				
82	82	Yukari Shigemoto-Mogami	Study about the cell composition of blood brain barrier-microphysiological system (BBB-MPS) for reproducing pathological conditions				
83		Krysten Jones	A human hiPSC brain fatigue model and in vivo validation of a neuroactive peptide secreting synbiotic				
84	108	Hong Nam Kim	Neurovascular unit model for modeling human brain diseases				
85	+	Benoît G. C. MAISONNEUVE	Translational brain-on-chip models for Alzheimer's disease drug discovery.				
86		Patrick C Hurley	Development of MS-on-a-chip; effects of microfluidic device structure.				
87	+	Sourabh Sharma	A fetal blood-brain-barrier microphysiological system to study the effect of in-utero toxicant exposure				
88		Eric Reed	Impact of Dynamic Oxygen Conditions on a Human Neurovascular Unit-on-a-Chip				
89	167	Emma Drabbe	Higher Throughput Bioreactor for Retinal Organoid Microenvironmental Control				
00	160	M A	The Investigation of Drug-Induced Dementia in an hiPSC-Central Nervous System Assessing Deficits in Long-Term Potentiation				
90 91	+	Kaveena Autar Florian Larramendy	from Anticholinergic Burden Compartimentalized MEA Pain(s)-on-chip platform				
92		Mahdi Ghazal	Next-generation electrophysiology for functional characterization of human neural organoids				
93	+	Maria Grisales	Development of a Human-Based Cortical Neuron Model for Down Syndrome				
94	+	Francesca Michela Pramotton	Senescent microphysiological model to investigate vascular and lymphatic dysfunction in neurodegenerative diseases				
95		Maren Schenke	Sex hormone supplementation increases physiological relevance of an in vitro model of the developing human brain				
	333	Widten Schenke	A Functional In Vitro 3D iPSC-Derived Neuromuscular Junction Model for use in Neurotoxin Potency Testing or Preclinical Drug				
96		Nicholas Geisse	Development				
97	427	Tatsuya Osaki	Engineering 3D endothelial vascular networks from Rett syndrome patient-derived iPS cells				
98	468	Zhanhe Liu	High Precision and High Throughput Neuronal Circuits Printing for Organ-on-A-Chip Devices				
99	499	Alex Rittenhouse	Addressing the role of maternal inflammation in Autism Spectrum Disorder using immune-competent brain microphysiologic systems				
100		Lise Harbom	Modulation of glial differentiation in a 3D iPSC-derived CNS model				
101		Gülden Akçay	Femtoprinted Brain-on-Chip to Explore Brain Microenvironment				
102	522	Ikuro Suzuki	A novel field potential imaging method to evaluate systemic neuronal function using a compartmentalized in vitro MPS device				
103	539	Jennifer Lawson	Generation of Human Endothelial Cells for Integration of Pericytes and Regional Specific Astrocytes to Mimic in vitro Blood Brain Barrier Model from Human Induced Pluripotent Stem Cells				
104	542	Alexandra Maertens	Circadian rhythm gene networks in neurobiology and neurodegenerative diseases: comparing in vitro cell lines, organoids, and in vivo data using weighted gene correlation network analysis				
105	554	Itzy E. Morales Pantoja	Enhancing brain organoid size and complexity using 3D printed microfluidics				
106	568	Prashant Hariharan	Choroid plexus-on-a-chip: a microfluidic model to study how cerebrospinal fluid secretion and blood-cerebrospinal fluid barrier function are affected by hydrocephalus-associated inflammation.				
107		Vincent Truong	Completing The Circuit: Recreating Sensory Pathways Using Human Keratinocytes, Sensory Neurons, and Dorsal Horn Neurons				
108		Spencer Seiler	A feedback-driven IoT microfluidic, electrophysiology, and imaging platform for brain organoid studies				
109	+	Emma Warrner	A Novel Microfluidic Chip to Induce Linear Concentration Gradients for Differentiation of Cochlear Cells of Inner Ear Organoids				
110	625	Peter Udall	Development and characterization of human iPSC-derived 3D neurospheres for disease modelling and drug discovery				
		I	SESSION: 1.7 MPS for metabolic and endocrine disorders				
111	236	Giulia Raggi	A novel human 3D peristaltic simulating Gut-on-Chip platform for predictive testing of new barrier-protecting drug candidates				
112	323	Ana Carolina Figueira	ESTEATO-CHIP: A NEW MODEL FOR INVESTIGATING NON-ALCOHOLIC FATTY LIVER DISEASE THROUGH THE INTEGRATION OF 3D CULTURES OF ADIPOCYTES AND HEPATIC CELLS				

Poster							
Board	Abstract						
Number	ID	Presenter	Title				
	SESSION: 1.7 MPS for metabolic and endocrine disorders						
113	364	Trivia Frazier	ObaCell® Obesity-on-a-Chip, a Platform for Disease Modeling and Drug Development - A GLP1 agonist study				
114	+	Erin Tevonian	Engineering a vascularized liver spheroid model of hepatic insulin resistance				
115	413	Sakai Yasuyuki	A liver microphysiological system with an open organoid structure for liver disease modeling.				
116	634	Rachelle Baun	Modeling Metabolic Dysfunction-Associated Steatohepatitis in human liver Microphysiogical Systems for clinical prediction of therapeutic efficacy.				
117	644	114 - 14/2161 -	Mandulation of the intervals the transfer of the intervals of the interval				
117		Ute Wölfle	Modulation of the interplay between fatty liver spheroids and psoriasis keratinocytes by liver- protecting herbal remedies Digital pathology with artificial intelligence analysis provides insight to the efficacy of antifibrotic compounds in human 3D				
119		Susan Grepper Francisco Conceição	MASH model Unveiling Bone Remodeling Dynamics: exploring osteoblast-osteoclast interactions in an organ-on-chip model via biomimetic bone-remodeling micro-units				
113	032	Transisco conceição	SESSION: 1.8 MPS for immune response and diseases				
120	5	Trinath Jamma	Study the impact of host gut microbiota-derived secondary bile acids on intestinal inflammation				
121	18	Dawn Lin	High-throughput organ-specific micro-vessel model for vascular research				
122	22	Tim Kaden	DSS-induced colitis-on-chip model to study the therapeutic potential of the secondary bile acid lithocholic acidin vitro				
123	31	Kylie Gallagher	Creation of colon epithelium-immune microphysiological systems on porous scaffolds				
			Recapitulation of the pathophysiology of inflammatory bowel disease using colon organoids differentiated from human				
124	43	Fuki Yokoi	pluripotent stem cells				
125	59	Joel P Joseph	T cell activation in 3D bioprinted hydrogels mimicking biomechanical properties of lymph node microenvironment				
126	84	Moritz Pfeiffenberger	Development of a cartridge bioreactor for parallelized cultivation and stimulation of a complex fracture healing model				
127	91	Huddleston Mary Elizabeth	Evaluation of a Pathogen-Killing Synbiotic in a Human Intestine-on-a-Chip				
128	109	Ryuji Yokokawa	hiPSC-derived human airway and alveolus on-chip models: Decoding dynamic immune responses to SARS-CoV-2 in human lungs				
120	110	Kayanat Amah	Comparative analysis of the calcinous inhibitors syclespering and veclospering an eximany hyman kidney enithelial calls				
129		Kayenat Aryeh	Comparative analysis of the calcineurin inhibitors cyclosporine and voclosporin on primary human kidney epithelial cells				
130	1	Kevin Bewley	Adding cellular immune elements into a lung SARS-CoV-2 infection MPS model system				
131	143	Alexandra Damerau	Dual-chambered bioreactor for biomimetic culture of human joint components				
132	152	Naomi Coombes	SARS-CoV-2 infection in upper and lower human respiratory MPS at high containment as a model for pandemic pathogens				
133	+	Kevin J. Pollard	Microphysiological Peripheral Nerve Invasion by Respiratory Viruses				
134	1	Noo Li Jeon	Inflammatory Gut-on-a-Chip for Testing Live Biotherapeutics Product for Inflammatory Bowel Disease				
135	+	Jenna Kastenschmidt	Modeling disease and testing therapeutic response using human immune organoids				
136	+	Sarah Heub	Automated continuous unidirectional perfusion of vascularized 3D in vitro models.				
137	+	Bhumi Suthar	Engineering a human endothelialized platform for disease modeling				
138		Shuai Shao	A microphysiological system reveals neutrophil contact-dependent attenuation of pancreatic tumor progression by CXCR2 inhibition-based immunotherapy				
139	254	Elena Müller	Novel microfluidic staining chip for suspension and adherent cell cultures requiring minimized cellular and reagent resources				
140	293	Crystal Burke	Modeling emerging respiratory virus infection utilizing a lung microphysiological system				
141	351	Hosein Mirazi	Modeling Human Joint Health and Disease: A Four-Cell Co-culture Chip Approach Under Varied Fluid Shear Stress				
142	358	Isabelle Linares	Developing a Human Tendon-on-a-Chip with Vascular Flow to Model Inflammatory Mechanisms in Fibrotic Tendon Pathology				
			IPS-based pathophysiologically-relevant human liver co-culture microfluidic model for the study of its interactions with				
143	+	Robin Houssier	parasitic Schistosoma mansoni eggs				
144	+	Samantha Holt	An in vitro model of the skin microvasculature to investigate host response to borrelia infection				
145	398	Yunhao Zhai	Modeling intramuscular vaccination with mRNA vaccines in a lymphoid follicle organ chip				
146	465	Amind B. Columb	Utilization and Development of in vitroµSiM Platforms to Study Bacterial Invasion of the Osteocyte Lacuno-Canalicular				
146		Arvind R. Srivatsava	Network				
147	1	Vidhya Vijayakumar	A multi-strain human skin microbiome model provides a testbed for disease modeling				
148	516	Evan Cirves	3D In Vitro Modeling of Extramedullary Granulopoiesis in Wound Healing				
149	529	James N. Wilking	Stomach-on-chip co-culture model reveals increased recruitment of dendritic cells to the gastric epithelium upon H. pylori-induced apoptosis				
150	597	Marla Dubau	iPSC-derived immunocompetent skin models as an alternative method for the in vitro identification of skin-sensitizing foreign substances				
151	612	Hediye Cinar	Establishment of Microphysiological Jejunum Platform in Emulate Organ-Chip System to be Used in Cultivation of Viruses and Parasites Development of a simultaneous evaluation system for anticancer drug sensitivity and side effects using microphysiological				
362	437	Yuki Kobayashi	Development of a simultaneous evaluation system for anticancer drug sensitivity and side effects using microphysiological systems and 3D organoid culture method Establishment of an anti-capper drug consitivity assessment system using microphysiological systems and foliop breast capser.				
363	445	Honoka Hashizume	Establishment of an anti-cancer drug sensitivity assessment system using microphysiological systems and feline breast cancer organoids				