				JUNE 28th 2023
Poster board number	Abstract ID	Presentation time	Presenter Name	Title
1	246	10:00-11:30 am	Yuki Yamamoto	Application of Human iPSC-derived 3D-structure Alveolar Organoids for Translational IPF Therapeutics Research
2	247	4:30 - 6:00 pm	Alandi van Niekerk	Investigating the anticancer potential of Sutherlandia frutescens in NHI-H69AR cancer mini-tumours
3	249	10:00-11:30 am	Eileen Hallscheidt	Implementation of an intestinal organ-model to investigate the human absorption and first-pass metabolism of pesticides
4	252	4:30 - 6:00 pm	Bo Ram Lee	CHARACTERIZATION AND ROBUST CULTIVATION OF PORCINE INTESTINE STEM CELLS TOWARD ANIMAL TESTING REPLACEMENT
5	253	10:00-11:30 am	Sangmin Jung	Proteomic-phenotypic dual profiling on anti-angiogenic drugs using high-throughput microfluidic platform
6 7	254 255	4:30 - 6:00 pm 10:00-11:30 am	Haley Ehlers Mathias Busek	Vascular inflammation modulates Trans-Endothelial Electrical Resistance and immune cell migration in a scalable organ-on-a-chip platform Pump-less Organ-on-a-Chip platform: A versatile tool for cell biological research
8	256	4:30 - 6:00 pm	Olivier Guenat	Immune cell extravasation in lung infection — to tilt or not to tilt?
9	257	10:00-11:30 am	Benedikt Maurer	Towards a fully automated drug testing platform with engineered neural networks in vitro
10	258	4:30 - 6:00 pm	Sweeta Akbari	Fabrication and development of emulsion-templated porous materials for 3D cell culture
11	259	10:00-11:30 am	Begum GOKCE	Investigation of the effects of blood degradation products on brain endothelium and astrocytes by an in vitro BBB model
12	260	4:30 - 6:00 pm	Arjen Gebraad	Assessment of vasculogenic potency of bone marrow derived stem/stromal cells from multiple myeloma and acute myeloid leukemia patients in a microfluidic chip
13	261	10:00-11:30 am	Tomas van Dorp	Encapsulating Micro-Engineered Heart Tissues-on-Chip in Bioactive Hydrogels to Integrate Vascularization
14	262	4:30 - 6:00 pm	Cécile Bosmans	Emulating physical dynamicity of arterial blood vessels and neighbouring tissue interaction
15	263	10:00-11:30 am	Laura de Heus	Optimization of iPSC-derived endothelial cell culture in 3D hydrogel-based vessel-on-chips for studying long-term vascular dysfunction
16	264	4:30 - 6:00 pm	Sarah Plöger	Integration of patient-derived microtumors and autologous immune cells into tailored organ-on-chip platforms for the study of cancer-immune
				interactions and pharmacological interventions
17 18	265 266	10:00-11:30 am 4:30 - 6:00 pm	Marie Hut Katarina Vulić	Microfluidic perifusion system for single organoid culture and isolation of its secreted extracellular vesicles In vitro axon structuring in microfluidic devices with nanoscale spatial constraints
19	267	10:00-11:30 am	Xinyu Zhang	In vitro axoni sutucuning in inturbinduic devices with inalioscare spatial constraints In vitro mechanical and electrical mapping of hPSC-derived cardiomyocytes
20	268	4:30 - 6:00 pm	Bram Meijlink	Microvessel-on-a-chip model for studying ultrasound and microbubble-mediated drug delivery
21	269	10:00-11:30 am	Ferran Lozano Juan	Patient specific cardiac model of dilated cardiomyopathy in a beating heart-on-chip
22	270	4:30 - 6:00 pm	Samah Abousharieha	3D-PRINTED DEVICE PROVIDING VOLUMETRIC COMPRESSION AND STRAIN FOR CORTICAL BRAIN ORGANOIDS
23	271	10:00-11:30 am	Philipp Paulitschke	New non-invasive, label-free monitoring approach for 2D and 3D cell culture
24 25	272 273	4:30 - 6:00 pm 10:00-11:30 am	Angela Ibler Moritz Pfeiffenberger	Using a complex NASH in vitro model for drug development with siRNA technology
26	273	4:30 - 6:00 pm	Hoon Suk Rho	Development of an innovative cartridge bioreactor for parallelized cultivation and mechanical stimulation of complex tissue models 3D Manufactured Microphysiological System for Modeling Tissue-to-Tissue Barriers
27	275	10:00-11:30 am	Lenie van den Broek	A 3D lung tumor on a chip model to study the modulation of T cell infiltration under flow conditions in a high-throughput microfluidic culture system
28	276	4:30 - 6:00 pm	Karlis Grindulis	Organ-on-Chip device suitable for anaerobic conditions and decreased drug absorption
29	277	10:00-11:30 am	Rodrigo Torres García	Contractile force measurement in a beating heart-on-a-chip
30	278	4:30 - 6:00 pm	Raul Silva	Bridging the gap - how human microphysiological systems improve the translatability of NASH Drug Discovery
31 32	279 280	10:00-11:30 am 4:30 - 6:00 pm	Cecilia Palma Agnieszka Rybak-Wolf	Investigating the contribution of cartilage and synovium to osteoarthritis development through a compartmentalized human joint-on-chip model Brain organoids to model human brain diseases
33	282	10:00-11:30 am	Katharina Schimek	3D spheroids of the pancreatic beta cell line EndoC-βH5 for modelling diabetes mellitus in a microphysiological system
34	283	4:30 - 6:00 pm	Xiomara Fernández-Garibay	Xeno-free bioengineered human skeletal muscle tissues
35	284	10:00-11:30 am	Heleen Middelkamp	The effect of embedded macrophages on intravascular coagulation in 3D vessels-on-chips
36	285	4:30 - 6:00 pm	Aimee Parker	An in-vitro platform to test mediators of neuronal death in Parkinson's disease and neurodegenerative disorders.
37	286	10:00-11:30 am	Insa Peters	Use of organ-on-a-chip technology in preventive doping research to predict possible metabolites for the calstabin-ryanodine receptor complex stabilizer
38	287	4:30 - 6:00 pm		\$107
39	290	10:00-11:30 am	Alessandro Cordiale Giusi Caragnano	TOOTH ON A CHIP: a MPS to mimic innervated dental pulp and mineralised interface Realization of an Organ-on-chip for the study of gastrointestinal chronic diseases, carcinogenesis and tumors.
40	291	4:30 - 6:00 pm	Marta Barenys	Bone-on-a-chip: culture of human 3D bone-like organoids in a self-designed microphysiological system to model intramembranous ossification.
41	293	10:00-11:30 am	Karina Narbute	Preclinical drug delivery testing and evaluation using lung-on-a-chip technology
42	294	4:30 - 6:00 pm	Noemi Petese	EIS Chip for precision medicine: measuring Sorafenib Effectiveness on HCC Cell Proliferation
43	295	10:00-11:30 am	Doriane Le Manach	Generation of miniaturized, vascularized microtissues with human extracellular matrix and tumor microenvironment for chemosensitivity testing of head
44	296	4:30 - 6:00 pm	Dik van Gent	& neck cancers Cancer-on-chip assay for paclitaxel sensitivity of breast cancertissue
45	297	10:00-11:30 am	Cara Buchanan	Callier-uriculp assay for partial makes estinativity or breast carrier tissue HLA diversity and compatibility in immunocompetent human tissue models
46	299	4:30 - 6:00 pm	Alinda Anameric	Complex 3D Models for Head and Neck Squamous Cell Carcinoma (HNSCC)
47	300	10:00-11:30 am	Sebastien Teissier	REVskin, a skin-on-chip equivalent with advanced blood-flow mimicry, represents a significant improvement in 3D culture models for wound-healing and
				skin-ageing studies.
48 49	302	4:30 - 6:00 pm	Siegfried Graf	Smart Lid for automated sampling and glucose measurement
50	303 304	10:00-11:30 am 4:30 - 6:00 pm	Dhanesh Kasi Pauline Zamprogno	Engineered microvascular networks using controlled hydrogel structuration on-chip IPF-on-chip model based on biological membranes
51	305	10:00-11:30 am	Massimo Alberti	Permeation of small molecules through biological and synthetic skin simulants using an organ-on-chip platform
52	306	4:30 - 6:00 pm	Emily Jones	Development of a robust multi-organ-chip system for human disease modelling.
53	307	10:00-11:30 am	Arnita Spule	Development of a Real-time Cellular Barrier Integrity Monitoring System in PDMS-free Lung-on-Chip devices
54	308	4:30 - 6:00 pm	Arunima Sengupta	A new lung-on-chip platform for acute inhalation toxicity assessment and treatment
55 56	310 311	10:00-11:30 am 4:30 - 6:00 pm	Soheila Zeinali Iman van den Bout	Unleashing the Intravasation potency of Non-Stem-Like Lung Cancer Cells with EMT Features: A Functional Microvasculature Approach A breast cancer devided organicid model regulation and publication of the property of the pr
				A breast cancer derived organoid model reveals an unlikely event: How in vitro data can inform in vivo tumour behaviour An innovative three-channel micro cavity-equipped microfluidic biochip to generate patient-derived pancreatic cancer spheroid-on-a-chip models for
57	312	10:00-11:30 am	Katja Graf	Arminovative underectaining into cashy-equipped introducing blocking to generate patient-derived particle activities approaches screening novel therapeutic approaches
58	315	4:30 - 6:00 pm	Sri Harsha Paladugu	Multi-Organ-on-Chip to Study Breast Cancer Metastasis
59	318	10:00-11:30 am	Tanja Zidarič	A representative full thickness skin model with optimised geometry simulating the dermis and epidermis
60	320	4:30 - 6:00 pm	Tessa de Vries	Flow affects orientation of IPSC-derived vascular smooth muscle cells in a patient-specific 3D blood vessel model mimicking in vivo morphology and
61	321	10:00-11:30 am	Hélia Fernandes	pharmacological functioning of arteries Design of a biogriphed microfluidic chin as a tumor liver model for drug screening
62	322	4:30 - 6:00 pm	Sarah Heub	Design of a bioprinted microfluidic chip as a tumor liver model for drug screening Multi-axis MPS enabling in vitro tissue mechanical stimulation for musculoskeletal research
63	323	10:00-11:30 am	Angelina Freitag	Studying liver-sielt crosstalk in a microphysiological system under healthy and diseased conditions
64	326	4:30 - 6:00 pm	thomas Meynard	DEVELOPMENT OF AN INSTRUMENTED MICROFLUIDIC SYSTEM TO STUDY CHEMORESISTANCE IN PANCREATIC DUCTAL ADENOCARCINOMA
65	328	10:00-11:30 am	Julia Kühnlenz	Optimisation of 3D Thyroid and Liver Models for cross-species Comparison of Thyroid Toxicity Mechanisms
66	329	4:30 - 6:00 pm	Flora Clément	Influence of diabetes on pancreatic ductal adenocarcinoma modelled in a pancreas-on-a-chip
67 68	333 334	10:00-11:30 am 4:30 - 6:00 pm	George Truskey Elke Bremus-Köbberling	Effect of Adenine Base Editing on the Function of a Tissue-Engineered Vascular Model of Hutchinson-Gilford Progeria Syndrome
69	335	10:00-11:30 am	Hazal Kutluk	3D Printed Organ-on-Chip System for Immunologic Studies Well-Defined Extracellular Matrices in Organ-on-Chips: A New Approach
70	336	4:30 - 6:00 pm	Chencheng Wang	An improved differentiation protocol for human stem cell-derived islets
71	337	10:00-11:30 am	Jana Van Dycke	Human intestinal enteroids to identify antivirals targeting enteric viruses and the host immune response.
72	338	4:30 - 6:00 pm	Alexandra Damerau	An innovative bioreactor platform: Fluidic shear stress reduces TNFα-mediated cartilage damage in a 3D model of degenerative joint disease
73	340	10:00-11:30 am	Flavio Bonanini	In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed
74 75	341 342	4:30 - 6:00 pm 10:00-11:30 am	Annina Stuber Stefanie Hoffmann	Aptamer-modified Nanopipettes for In Situ Monitoring of Microphysiological Systems Establishment of an MPS model for routine tecting of drug candidates and their effect on the intestinal harrier.
75 76	342	4:30 - 6:00 pm	Chutong Zhong	Establishment of an MPS model for routine testing of drug candidates and their effect on the intestinal barrier Tubule-on-a-Chip: Culture and Analysis of a Novel Immortalised Human Distal Convoluted Tubule Cell Line in an Organ-on-a-Chip System
77	344	10:00-11:30 am	Maria Warschinke	-Clostridiodes difficile infection in a primary human intestinal gut-on-chip
78	346	4:30 - 6:00 pm	Lena Brücker	Validation of primary human hepatocyte spheroids for early ADME assessments
79	348	10:00-11:30 am	Sally Williamson	Combining tumor-on-chip technology and metabolic imaging to monitor treatment efficacy of cancer therapies on Patient Derived Microtumors
80	349	4:30 - 6:00 pm	Dowlette-Mary Alam El Din	Functional Assessment of hiPSC Derived Brain Organoids to Study the Effects of Chemical Exposure and Electrical Stimuli on Synaptic Plasticity
81 82	350 351	10:00-11:30 am 4:30 - 6:00 pm	Enrico Accastelli Tim Kaden	Beating heart-on-a-chip: Integration of electrodes to measure contractility of cardiac spheroids DSS-induced colitis-on-chip model to study the therapeutic potential of the secondary bile acid lithocholic acid in vitro
		0.00 pm		22 March 201 Congression Constant and Accordance of the Secondary one detailed in view

83	352	10:00-11:30 am	Paolo Cesare	Cancer-mediated Chemoattraction drives Axonal Guidance and Excitability of 3D Sensory Neurons in a Compartmentalized Innervation Chip
84	353	4:30 - 6:00 pm	Lok Chun Fan	Single-cell resolution spatial transcriptomics on High Density CMOS MEA Chips
85	354	10:00-11:30 am	David Pamies	Are glycol ethers neurotoxic for humans? An in vitro and in silico evaluation.
86	355	4:30 - 6:00 pm	Linnea Johansson	Evaluation of two complex 3D in vitro human alveolar co-cultures for prediction of lung inflammation and toxicity
87	356	10:00-11:30 am	Anastasiia Dubrova	Tumor-on-chip model to decipher the effect of nanoparticle-mediated photothermia (NP-PTT) on tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC)
88	357	4:30 - 6:00 pm	Sophia Coffy	On chip pancreatic cancer modelling with decellularized extracellular matrix from pancreas.
89	358	10:00-11:30 am	Rahman Sabahi-Kaviani	Combining microtunnel devices and actuator chips: Instructive microenvironments for neural networks
90	359	4:30 - 6:00 pm	Sabrina Nicolò	Coupling a novel, bicompartmental MPS with a 3D, commercially available, human small intestinal tissue model to assess drug permeation and absorption
91	360	10:00-11:30 am	Anas Munir	Beta cell death and IAPP: an examination through the lens of organoids on chip
92	361	4:30 - 6:00 pm	Robin Pampiermole	Developing a hiPSC-derived blood-brain barrier model to test barrier opening by microbubbles and focused ultrasound
93	362	10:00-11:30 am	Julia Hauptstein	Development of a 3D Kidney-on-a-Chip Model using iPSC-derived Proximal Tubule Cells
94	363	4:30 - 6:00 pm	Sheeza Mughal	Decoding Chronic Fatigue Syndrome and Long-COVID-19 using bioengineered 3-D in vitro skeletal muscle tissues. Connecting the human intestine and liver: a primary jejunum and primary hepatocyte multi-organ MPS for more predictive studies of human drug ADME
95	364	10:00-11:30 am	Elizabeth M. Boazak	and oral bioavailability
96	365	4:30 - 6:00 pm	Henry W. Hoyle	Development of an in vitro bile-duct-on-a-chip-platform using patient-derived cholangiocytes
97	366	10:00-11:30 am	Beatrice Anna Brugger	Combination of cell- and tissue culture in a new fluidic flow chamber to investigate biological pathways on a physiological level A multiorgan-on-chip platform combining a tumor chamber and blood vessel for studying the intersection between Type 2 diabetes mellitus and cancer
98	367	4:30 - 6:00 pm	Nilesh Kumar	metastasis
99	368	10:00-11:30 am	Jana B. Petr	Dynamic Platform for Continuous, High-Resolution Imaging of Organotypic Brain-Tissue Slices
100	369	4:30 - 6:00 pm	Blandine Clément	Development of hydrogel-based 3D in vitro neuronal networks
101	371	10:00-11:30 am	Bjorn de Wagenaar	Organ-on-Chip device integration and biological evaluation inside the smart multi well plate
102 103	373 374	4:30 - 6:00 pm 10:00-11:30 am	Angelica B. Patterson Ana Ribeiro	Glioblastoma patient-derived organoids: Characterizing the effect of Tumor Treating Fields on the immune cell microenvironment Development of epidermis-on-a-chip for toxicological evaluation of nanomaterials
104	375	4:30 - 6:00 pm	Barış Dedekargınoğlu	Rapid Prototyping of Microfluidic Co-culture Platform based on a 3D Printing Workflow for Systematic Investigation of Tumor Stromal Interactions
105	376	10:00-11:30 am	Philipp Hauger	Analysis of endothelial barrier function and polarity in 3D microvascular networks
106	377	4:30 - 6:00 pm	Dr Alessandra Grillo	Development of a 3D organ-on-chip model of the collecting duct for disease modelling
107	378	10:00-11:30 am	Devin Veerman	Retina-on-chip: Designing a PDMS-based Microfluidic Chip with 2 µm-thick Membranes for Culture of iPSC-Derived Retinal Pigment Epithelium
108 109	380 381	4:30 - 6:00 pm 10:00-11:30 am	Angela Russo Sujey Palma-Florez	Increased local testosterone levels alter human fallopian tube genetic profile and signaling on the PREDICT-MOS microfluidic platform
110	382	4:30 - 6:00 pm	Lotta Isosaari	Human cortical neurons incorporation into blood-brain barrier microfluidic model for drug screening in neurodegenerative diseases Simultaneous induction of vasculature and neuronal networks formation on a chip reveals a dynamic interrelationship between cell types
111	383	10:00-11:30 am	Giacomo Cretti	Development of advanced setups with integrated readouts for evaluation of cardiotoxicity in a heart on chip device
112	384	4:30 - 6:00 pm	Elisa Monti	Development of a liver-heart Multi Organs-on-Chip platform for drug toxicity studies
113	386	10:00-11:30 am	Stefan Grünzner	Utilizing commercially available automated stacking machines to scale organ-on-chip manufacturing from prototype to volume production
114 115	387 388	4:30 - 6:00 pm 10:00-11:30 am	Albert van Breemen Miina Björninen	Beyond mobile phone displays: leveraging flat panel display technology for biomedical applications. Studying the effect of ischemia on tissues – A research overview of the Centre of Excellence in Body-on-Chip Research (CoEBoC)
116	389	4:30 - 6:00 pm	Jenny Walker	Studying the enter of ischemical on issues — A research overview of integrated oxygen and TEER sensing enable rapid kidney toxicity detection in a high-throughput co-culture of the human proximal tubule
117	390	10:00-11:30 am	Kaisa Tornberg	Compartmentalized structure for hypoxia and control of oxygen microenvironments with good spatiotemporal precision
118	391	4:30 - 6:00 pm	Alma Yrjänäinen	The generation of conjoined 3D vasculatures within a novel barrier-free, open top microfluidic chip for multi-tissue modelling
119	392	10:00-11:30 am	Mari Pekkanen-Mattila	Modeling cardiac ischemia-reperfusion and border zone by using human induced pluripotent stem cell-derived cardiomyocytes.
120 121	393 395	4:30 - 6:00 pm 10:00-11:30 am	Tobias Ruff Janis Plume	Engineering a microfluidic based living neural interface towards vision restoration Analysis of RNA content of anaerobic microbiota derived extracellular vesicles using organs on a chip
122	396	4:30 - 6:00 pm	Erin Spiller	Analysis of NAV content of anierootic microbiotic derived extractional vesicles using organis on a clip Bioprinting effects on organised proliferation, differentiation, and metabolism Content of the Content of th
123	398	10:00-11:30 am		The characterization of a kidney cancer microphysiological system to investigate the impact of the SARS-CoV-2 virus spike protein on renal
			Maryna Somova	pathophysiology
124	399	4:30 - 6:00 pm	Emma Lund	Application of an Autologous Human 3D Vessel-on-a-Chip Cytokine Release Assay System to Predict the Safety of Novel Biologics
125				
	400	10:00-11:30 am	Caitlin Jackson	Inherently porous polycaprolactone substrates for in vitro 3D breast cancer cell culture for MPS applications Polymorphopuclear neutrophils and monocutes are circulating vectors of transmission in the establishment of secondary infection for i by Stanbulgcoccus
126	400	4:30 - 6:00 pm	Paula Zachen	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus
126 127 128	402 405 406	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics
126 127 128 129	402 405 406 407	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration
126 127 128	402 405 406 407 408	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies
126 127 128 129 130	402 405 406 407	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration
126 127 128 129 130	402 405 406 407 408 409	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-
126 127 128 129 130 131 132	402 405 406 407 408 409 411 414	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties
126 127 128 129 130 131	402 405 406 407 408 409 411	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-
126 127 128 129 130 131 132 133 134 135 136	402 405 406 407 408 409 411 414 415 417 418	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases
126 127 128 129 130 131 132 133 134 135 136 137	402 405 406 407 408 409 411 414 415 417 418 419	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchyman, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems
126 127 128 129 130 131 132 133 134 135 136 137	402 405 406 407 408 409 411 414 415 417 418 419 420	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions
126 127 128 129 130 131 132 133 134 135 136 137	402 405 406 407 408 409 411 414 415 417 418 419	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchyman, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems
126 127 128 129 130 131 132 133 134 135 136 137 138	402 405 406 407 408 409 411 414 415 417 418 419 420 421	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip.
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 30 Skeletal Muscle Microfissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunemodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Yälimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunemodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of an osto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Rey Recommendations from GIVIMP for Test System Suppliers Development of an osto-microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic m
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed skin models by me
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed skin models by me
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed skin models by me
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Yälimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of an vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed skin models by m
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrates's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D ainway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device wi
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Elia Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustoffuidic microphysiological system depends on cell type- specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed skin models by mechanical stim
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438 439	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed skin models by mechanical stimulation in organ-on-chip devices Modeling intrinsically weak blood brain barriers in CNS
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Vällmäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal Robert Moyer	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelia cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type- specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of an vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in gliob
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438 439 440	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed skin models by mechanical stimulation in organ-on-chip devices Modeling intrinsically weak blood brain barriers in CNS
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438 439 440 443 445	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal Robert Moyer Altuğ Özçelikkale Stefanie Fuchs Valerija Movcana	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microfissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GiVIIMP for Test System Suppliers Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed Skin models by mechanical stimulation in organ-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic m
126 127 128 129 130 131 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 147 148 149 150 151 152 153 154 155 156 157 158	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438 439 440 443 445 446	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal Robert Moyer Altuğ Özçelikkale Stefanie Fuchs Valerija Movcana Lisa Hoelting	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrie-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skelatid Muscle Microsisses in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into chinically relevant outcomes Human mesenchyma, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type- specific mechanical properties Vacularized 3D airway-on-3-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidicis production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed skin models by mech
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438 439 440 443 445 446 448	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Elia Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal Robert Moyer Altuğ Özçelikkale Stefanie Fuchs Valerija Movcana Lisa Hoelting Joose Kreutzer	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidic sproduction standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GiVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device with integrated microelectode arrays for neuronal research Improving reconstructed skin models by mechanical stimulation
126 127 128 129 130 131 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 147 148 149 150 151 152 153 154 155 156 157 158	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438 439 440 443 445 446	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal Robert Moyer Altuğ Özçelikkale Stefanie Fuchs Valerija Movcana Lisa Hoelting	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrie-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skelatid Muscle Microsisses in a Novel Perfusable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into chinically relevant outcomes Human mesenchyma, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type- specific mechanical properties Vacularized 3D airway-on-3-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidicis production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in glioblastoma-on-chip A novel, animal-free culturing setup for vascularized, 3D engineered muscle bundles Microfluidic multi-compartment perfusion device with integrated microelectrode arrays for neuronal research Improving reconstructed skin models by mech
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438 439 440 443 445 446 448 450 451	4:30 - 6:00 pm 10:00-11:30 am	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal Robert Moyer Altuğ Özçelikkale Stefanie Fuchs Valerija Movcana Lisa Hoelting Joose Kreutzer Bastien Duckert	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 30 Skeletal Muscle Microstissues in a Novel Perfusiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico reglication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from Givilidic assay, to probe signaling and function in glomeruli-on-chip. Rey Recommendations from Givilidic assay, to probe signaling and function in glomeruli-on-chip. Rey Recommendations from Givilidic assay, to probe signaling and function in glomeruli-on-chip. Rey Recommendations from Givilidic model as a drug screening tool for osteoarthritis Immunomodulation in gloibatoma-on-chip A novel, animal-free culturing setup for vascularized,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438 439 440 443 445 446 448 450 451 452	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Ella Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal Robert Moyer Altuğ Özçelikkale Stefanie Fuchs Valerija Movcana Lisa Hoelting Joose Kreutzer Bastien Duckert Laura Soriano-Romaní	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusible Microphysiological System with Integrated Electrodes The alveolus in the spotlight- how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type- specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases Cell-friendly 3D oxygen imaging for microphysiological systems From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Key Recommendations from GIVIMP for Test System Suppliers Development of an opto-microfluidic assay to probe signaling and function in glomeruli-on-chip. Microfluidic mutic-compartment perfusion device with integrated microelectrode arrays for neuronal research improving reconstructed skin models by mechanical stimulation in organic-on-chip devices Modeling intrinsically weak blood brain barriers in CNS disea
126 127 128 129 130 131 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	402 405 406 407 408 409 411 414 415 417 418 419 420 421 422 424 425 427 428 429 430 431 433 434 435 436 437 438 439 440 443 445 446 448 450 451 452 453	4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Paula Zachen Nicole Engert Gabriele Pitingolo Léa Todeschini Alessandra Maria Anna Rando Mitchell Han Laurène Froment Lucile Rabiet Julian Gonzalez-Rubio Amin Forouzandehmehr Aurelien Lepoetre Hannu Välimäki Simone Bersini Maxime Mauviel Amanda Ulrey Shima Salehi Teodora Randelovic Elia Lampela Victor Krajka Camille Laporte Michelle Trempel Martin Nurmik Mashudu Mphaphuli Torsten Mayr Agathe Figarol Emily Könnecke Asli Kisim Satu Jäntti Julia Rogal Robert Moyer Altuğ Özçelikkale Stefanie Fuchs Valerija Movcana Lisa Hoelting Joose Kreutzer Bastien Duckert Laura Soriano-Romaní Tamara Haefeli	Polymorphonuclear neutrophils and monocytes are circulating vectors of transmission in the establishment of secondary infection foci by Staphylococcus aureus in a perfused model Stem cell-derived gut-on-chip technology to elucidate human Norovirus infections Process for bonding separate substrates by gelatin coating: applications in microfluidics A new Barrier-on-Chip system for straightforward workflow integration Direct evaluation of substrate's effects on intestinal epithelium cell cultures through a novel MPS for unbiased comparative studies Stimulating 3D Skeletal Muscle Microtissues in a Novel Perfusiable Microphysiological System with Integrated Electrodes The alveolus in the spotlight: how to translate lung in vitro studies into clinically relevant outcomes Human mesenchymal, liver, and endothelial cells self-organization in spheroids in an acoustofluidic microphysiological system depends on cell type-specific mechanical properties Vascularized 3D airway-on-a-chip with air and media perfusion to study COVID-19 and other respiratory diseases In silico replication of hypoxia dynamics and readouts of an ischemia/reperfusion MPS for system identification and pharmacological investigations From materials to manufacturing: a journey towards microfluidics production standardization Cell-friendly 3D oxygen imaging for microphysiological systems A microfluidic model of human vascularized breast cancer metastasis to bone for the study of immune-cancer cell interactions Development of an opto-microfluidic assay, to probe signaling and function in glomeruli-on-chip. Rey Recommendations from GirlWiMP for Test System Suppliers Development of a vascularized osteochondral microfluidic model as a drug screening tool for osteoarthritis Immunomodulation in globiastoma-on-chip Porton of the properties of the pr

166	458	4:30 - 6:00 pm	Jason Ekert	Using an in vitro neuromuscular junction model to investigate the effect of zilucoplan on functional impairment induced by AChR+ myasthenia gravis patient sera
167	459	10:00-11:30 am	Tarada Tripetchr	Establishment of an in vitro immunocompetent skin model system for skin sensitization assay as an alternative to animal models
168	460	4:30 - 6:00 pm	Saumey Jain	Microphysiological pipeline for reprogramming and differentiation – improving homogeneity and standardization
169	461	10:00-11:30 am	Kévin Gillois	Adaptation of organ-on-a-chip technology to BSL-3 environment: case study of SARS-CoV-2 infection on a long-on-a-chip model.
170	462	4:30 - 6:00 pm	Sholto de Wet	Assessing mitochondrial and autophagic changes brought about by Memantine using the mitochondrial event localiser (MEL)
171	463	10:00-11:30 am	Niklas Wiese	Posttransplant lymphoproliferative disorder in the lung - development of an EBV infection model as a proof-of-concept test platform for EBV-specific T cell products
172	464	4:30 - 6:00 pm	Hannes Campo	Recreating Pathological Endocrine Signalling Associated With PCOS Using Lattice, a Tissue-Agnostic Multi-Organ Microfluidic Platform.
173	465	10:00-11:30 am	Olakunle Oladimeji	Anticancer Potential of Sutherlandia frutescens in NCI-H69V Small Cell Lung Cancer Mini-Tumors.
174	466	4:30 - 6:00 pm	Mandy Esch	Two-organ MPS with liver and heart tissues for early-stage drug evaluation
175	467	10:00-11:30 am	Natali Barakat	Inhibition of metalloproteinases extends longevity and function of in vitro aged human iPSC- skeletal muscle
176	469	4:30 - 6:00 pm	Marla Dubau	Autologous approach to develop an immunocompetent skin model using iPSC-generated fibroblasts, keratinocytes, and dendritic cells
177	470	10:00-11:30 am		
178	471	4:30 - 6:00 pm	Thayná Avelino	A feasible model of in vitro adipose tissue for metabolic research
179	473	10:00-11:30 am	Isabelle Linares	Engineering a Microfluidic Human Tendon-on-a-Chip to Investigate Inflammatory Mechanisms in Tendon Healing
180	476	4:30 - 6:00 pm	Ying Wang	A Human-based Multiorgan Microphysiological System for Breast Cancer Metastasis Modeling
181	477	10:00-11:30 am	Frederic BOTTAUSCI	Improved Frequency Production of Controlled Microencapsulation using High Viscosity Polymer in Low-Cost Centrifugal Device
182	478	4:30 - 6:00 pm	Alodia Lacueva-Aparicio	An optimized kidney-on-a-chip model for handling graphene nanoparticles
183	481	10:00-11:30 am	Claudia Gärtner	A microfluidic multiorgan platform for automated cell culture utilizing iPS-derived cells
184	482	4:30 - 6:00 pm	Victor Zhang	Altering type I to type III collagen ratio for accurate microphysiological models of tendon injury
185	485	10:00-11:30 am	Zehra Uyar-Aydin	A 3D model for the survival niche of human long-lived bone marrow plasma cells
186	486	4:30 - 6:00 pm	Alessandro Dei	Advanced in vitro human airways models to study viral infections and perform antiviral drug screenings
187	487	10:00-11:30 am	Breanne Kincaid	Heavy metals and metal mixtures elicit differential impacts on neurodevelopment in human 3D brain model