JUNE 27th 2023					
Poster board number	Abstract ID	Presentation time	Presenter name	Title	
2	5	10:00-11:30 am 4:30 - 6:00 pm	Taci Pereira Ying Betty Li	h-VIOS: A novel human organ-on-a-chip platform using vascularized biomaterials Angiogenesis driven extracellular matrix remodeling of 3D bioprinted vascular networks for in vitro therapeutic testing	
3	7	10:00-11:30 am	francois busquet	Fun with NAMs	
4	8 11	4:30 - 6:00 pm	Tracey Hurrell	Altering cell fate transitions of human iPSCs during hepatic lineage specification	
5 6	12	10:00-11:30 am 4:30 - 6:00 pm	Silvia scaglione Karol Kugiejko	A human multi-organ and dynamic in vitro model for simultaneous and more predictive toxo-efficacy assays 3D Vessel-Gut-on-Chip Platform Investigating Interactions between Immunological System and Tumoral Tissue Remodelling and Angiogenesis	
7	15	10:00-11:30 am			
8	16	4:30 - 6:00 pm	Leandro Gallo Martina Benedetti	Utilizing microphysiological systems to model major hallmarks of Amyloid β-driven neuronal aging and assess drug applications in Alzheimer's Disease Eye damage reversibility in an in vitro model of bovine cornea to replace the Draize test completely.	
9	19	10:00-11:30 am	Nikita Karra	Development of a Brain on a Chip to Evaluate Compounds for the Treatment of Parkinson's Disease	
10 11	20 21	4:30 - 6:00 pm 10:00-11:30 am	Melis Asal Jos Oliive	In Vitro Intestine Models with In Vivo Like Barrier Properties For Multi OoC Models Endotoxin contamination alters macrophage-cancer cell interaction and therapeutic efficacy in pre-clinical 3D in vitro models	
12	22	4:30 - 6:00 pm	Amy W.A. Lucassen	Ototoxic effects of cisplatin and gentamicin in human inner ear organoids and human adult vestibular organs	
13	23	10:00-11:30 am	Iman van den Bout	ESTABLISHING A BREAST CANCER ORGANOID PANEL TO ASSESS DRUG RESPONSE IN AN UNDERSERVED SOUTH AFRICAN PATIENT POPULATION	
14 15	24 25	4:30 - 6:00 pm 10:00-11:30 am	Hélène Gautier Melissa Dibbernn Ganzerla	Traumatic Nerve Injury Models for Drug Development Comparison of In vitro oral and topic absorption toxicity of BPA and BPS using 3D cell cultures and microfluidic systems.	
16	26	4:30 - 6:00 pm	Fstemeh Mirzapour-Shafiyi	Biofabrication of long-lasting perfusable human vascular tissue on chip; To investigate effect of fluid flow on vessel remodeling	
17	27	10:00-11:30 am	Viraj Mehta	3D printed microphysiological systems for 3D tumor culture, personalized anti-tumor drug screening, and tumor metastasis	
18 19	28 29	4:30 - 6:00 pm 10:00-11:30 am	Jianbo Zhang Margot Bellenguez	Immune-competent gut microphysiological system for host-microbe-immune interactions A skin-on-a-chip microfluidic platform to investigate neurovascular interplays in rosacea	
20	30	4:30 - 6:00 pm	Matthias Gossmann	Assessment of a Smooth Muscle Cell Maturation Protocol for the Analysis of Contractile Properties	
21 22	31 32	10:00-11:30 am 4:30 - 6:00 pm	Chrisna Gouws Andrew Morrison	Establishing chemosensitive and drug resistant small cell lung cancer mini-tumor models using dynamic spheroid cultures Generation of 3D human lymph node organoids to study immune responses in multi-organ-on-chip models	
23	33	10:00-11:30 am	Elisabetta Michielon	Development of an in vitro3D endothelialised-Skin-on-Chip model for toxicology testing and immune cell trafficking	
24	34 35	4:30 - 6:00 pm	Sushma M. Bhosle	Modeling Nipah virus infection and treatment in a microfluidic lung-chip in maximum containment	
25		10:00-11:30 am	Olivier UWISHEMA	Microphysiological Systems: An emerging model for Cancer Research Assay development of novel high-throughput in vitro assay system using Microvascular-on-a-chip for the evaluation of oligonucleotide-induced platelet	
26	36	4:30 - 6:00 pm 10:00-11:30 am	Kosuke Harada	aggregation potential Development and functional characterization of a microphysiological system for assessing in vitro drug toxicity and metabolism in the hepatobiliary	
28	39	4:30 - 6:00 pm	Elisa Cauli Lekha Shah	environment 3D in-vitro breast models to understand the role of stiffness on breast cancer cell stemness and bone metastasis	
29	40	10:00-11:30 am		A 3D colon on chip to study the peristalsis influence on the cellular ecosystem in physiopathological conditions	
30	41	4:30 - 6:00 pm	Elsa Batista	The importance of traceability in dimensional metrology in microfluidic systems	
31 32	44 45	10:00-11:30 am 4:30 - 6:00 pm	Rodi ABDALKADER Leonie Hillebrands	The development of a microphysiological system of the human corneal epithelium under dry eye-like conditions In vitro metabolism of the 14C-labelled fungicide tebuconazole by rat liver organ-model	
33	48	10:00-11:30 am	Daphne Panocha	Culture of human lymph node fibroblastic reticular cells in different 3D biomaterials to mimic the lymph node T cell zone	
34 35	49 50	4:30 - 6:00 pm 10:00-11:30 am	Jonas Jäger Guy Barbin Barbin	Engineering Metabolically Active Reconstructed Human Skin for Organ-on-Chip Novel fully primary human airway epithelium-alveolar macrophages in vitro co-cultures models to study host pathogen interactions	
36	51	4:30 - 6:00 pm	Xiao-Yann Huang	Development of fully primary human 3D alveolar model (AlveolAir™)	
37	53	10:00-11:30 am	Federico Nebuloni	Assaying axonal damage and repair using microfluidics with fluid walls	
38 39	54 55	4:30 - 6:00 pm 10:00-11:30 am	Daria Sokoliuk Marine Meyer	Fabrication of 3D microstructures within a perfusable vasculature-on-a-chip system using two-photon polymerization Modeling inflammatory bowel disease in human intestinal organoids using a high-throughput workflow	
40	56	4:30 - 6:00 pm	Maria Clapés	A novel approach for label-free drug efficacy analyses of pancreatic cancer organoids using high-content imaging	
41 42	57 58	10:00-11:30 am 4:30 - 6:00 pm	Joel Blanchard Chrusanthi-Maria Moysidou	The multi-cellular integrated human brain(miBrain) to predict, understand, and treat neurodegenerative disease e-Transmembranes: Bioelectronics and bioengineering synergy to investigate host-microbiome interactions in vitro	
43	59	10:00-11:30 am	Jan Powell	Exploring the pathogenesis of Campylobacter jejuni using a Caco-2 intestinal organ-on-a-chip	
44 45	60	4:30 - 6:00 pm 10:00-11:30 am	Charlotte Bouquerel	Precise control of oxygen in a tumor-on-chip model to study drug resistance Modeling the joint on a chip: a mechanically active microfluidic system to engineer 3D multi-layer osteochondral tissues and investigate osteoarthritis	
46	63	4:30 - 6:00 pm	Andrea Mainardi Bettina Lickiss	processes to a single cell level Robustness study of commercial human iPSC-derived cardiomyocytes regarding contractile properties	
47	64	10:00-11:30 am	Benoît MAISONNEUVE	Automated Organ-on-Chips for reducing intralaboratory cell culture variability	
48	65 66	4:30 - 6:00 pm	Florian Larramendy Serge Roux	Functional skin-on-a-chip, a relevant in-vitro platform to replace animal models in drug and cosmetic development Versatile organ-on-a-chip model allowing air-liquid interface and blood barrier	
49 50	67	10:00-11:30 am 4:30 - 6:00 pm	Sina Bartfeld	Human gastric organiods reveal Helicobacter pylori tropism to differentiated pit cells dependent on chemotaxis	
51	68	10:00-11:30 am	Sina Bartfeld	Human gastrointestinal organoids show patterning of innate immune signalling along the cephalocaudal axis.	
52 53	69 70	4:30 - 6:00 pm 10:00-11:30 am	Yashoda Chandorkar Chloe Whitehouse	Towards a dynamic in vitro model of the intestine using smart hydrogels Developing a scaffold-based model of neurodegeneration for drug discovery using 3D bioprinting	
54	70	4:30 - 6:00 pm	Aline Roch	Assessing efficacy of combination therapies in human colorectal cancer organoids using a standardized screening workflow	
55	74	10:00-11:30 am	Clémentine Richter	AN INFLAMED ALVEOLUS MODEL ON A BREATHING LUNG-ON-CHIP FOR INVESTIGATION OF HUMAN ANTI-INFLAMMATORY DRUG RESPONSE	
56 57	75 78	4:30 - 6:00 pm 10:00-11:30 am	Mariana Guedes Daiju Yamazaki	A lentiviral reporter system for live imaging of cell differentiation and mucus production in human lung organoids Culture medium study for construction of the cardiotoxicity evaluation system via hepatic metabolism	
58	80	4:30 - 6:00 pm	Núria Ginés Rodriguez	Miniaturized joint tissues and living microfluidics to study cartilage degenerative diseases (MINI-JOINT)	
59 60	81 83	10:00-11:30 am 4:30 - 6:00 pm	Eleonora De Vitis Huub Weener	iPSCs-derived microphysiological system for the study of Amyotrophic Lateral Sclerosisin vitro Identifying a common endothelial medium to connect organs-on-chips for CAR-T safety testing	
61	84	10:00-11:30 am	Victoria Palasantzas	Utilization of multicellular liver-on-chip to study non-alcohol-related fatty liver disease.	
62	86	4:30 - 6:00 pm	Lorenzo Coppadoro	Design, development and validation of TToP -True Tissue on Platform: a modular, versatile MicroPhysiological platform for compartmentalized cultures of tissue barriers.	
63 64	87 88	10:00-11:30 am	Aakash Patel	Establishment of a Fully Human iPSC-Derived Model of Peripheral Myelination	
65	88	4:30 - 6:00 pm 10:00-11:30 am	Octavio Presgrave Steven George	A PROPOSAL FOR VALIDATION OF MICRO-PHYSIOLOGICAL SYSTEMS An MPS CAR-T cell therapy model of the immunosuppressive solid tumor microenvironment	
66	90	4:30 - 6:00 pm	John Connelly	Understanding dynamic immune responses within a 3D microfluidic model of human skin	
67 68	91 92	10:00-11:30 am 4:30 - 6:00 pm	Linda Droessler Mark Rosowski	CBD prevents TNF-induced barrier disturbance in intestinal epithelial cells Bone marrow-on-a-chip: Emulation of the human endosteal and vascular hematopoietic stem cell niche	
69	93	10:00-11:30 am	Pan Zuo	3D-Oxygen Gradient Chip for Cancer Cell Migration Research	
70	94	4:30 - 6:00 pm	Carlos Pinzon-Arteaga	3D culture of blastocyst like structures derived from pluripotent stem cell cultures	
71 72	95 96	10:00-11:30 am 4:30 - 6:00 pm	Jennifer Rosowski Julia Alber	Emerging networks in Berlin: Charité 3R, Der Simulierte Mensch and Einstein Center 3R Raman-on-Chip: A window for the marker-free observation of tumor-immune interactions	
73	97	10:00-11:30 am	Julia Alber	Raman-on-Chip: A window for the marker-free observation of tumor-immune interactions	
74 75	98 99	4:30 - 6:00 pm 10:00-11:30 am	Haley Ehlers Flavio Bonanini	Modeling ischemic stroke in a triculture neurovascular unit on-a-chip Automation and validation of the OrganoPlate LiverTox for hepatotoxicity detection	
76	100	4:30 - 6:00 pm	Jens Kurreck	Bioprinting of Perfusable Organ Models for Disease Modelling	
77	101	10:00-11:30 am	Paul Vulto	ALS-on-a-chip: Towards patient-derived models for personalized therapy development	
78 79	102 103	4:30 - 6:00 pm 10:00-11:30 am	Federico Cantoni Dorota Kurek	Multi-hydrogel microvasculature by 2-photon polymerization and scaffold micromolding on-chip for perfusable cell co-culture 3D microphysiological placenta in-vitro model as a tool for drug transport studies and risk assessment	
80	104	4:30 - 6:00 pm	Savvina Chortarea	Understanding hemolysis-induced lung injury using an advanced preclinical in vitro model	
81	105	10:00-11:30 am	Signe Olsen	Establishment of an in vitro 3D model of microvascular perfused cardiomyocytes	
82	107	4:30 - 6:00 pm	Vinidhra Shankar	Automated high-content phenotypic screening and analysis platform to study pre- and post-implantation morphogenesis using stem cell-derived embryo models	

83	100	10.00 11 20	A2 - 111	A Nevel Misself vid Lives on Chin Models Analization in Developed Companying Turk
1	108		Annie Hamel	A Novel Microfluid Liver-on-Chip Model: Application in Regulated Genotoxicity Testing Development of a 3D bronchial model for application in microphysiologic systems containing recirculating neutrophils: in vitro assessment of respiratory
84	109	4:30 - 6:00 pm	Artur Christian Garcia da Silva	sensitizers aerosols.
85	110	10:00-11:30 am	Kevin Bewley	Experimental infection of primary Hamster airway cells with SARS-CoV-2
86	112	4:30 - 6:00 pm	Bryan Schellberg	Noninvasive, in-situ bioluminescence sensing enables automated, real-time tracking of fluorophore concentration on-chip
87 88	113 116	10:00-11:30 am 4:30 - 6:00 pm	John Cognetti Emanuel Behling	A photonic biosensor-integrated tissue chip platform for real-time sensing of secreted biomarkers Microbiome characterization using marker-independent imaging for Organ-on-a-Chip applications
89	118	10:00-11:30 am	Evita Van de Steeg	A novel physiologically relevant tissue explant gut-on-a-chip model with an aerobic-naerobic interface to study host-microbe interactions
90	120	4:30 - 6:00 pm	Behnam Amiri	Combining organ-on-a-chip and TK/TD modeling
91	121	10:00-11:30 am	Özlem Vural	Comparison of commercial NASH models as tools for pharmaceutical research and development
92 93	123 124	4:30 - 6:00 pm	Brad Hansen	Organotypic System for Modeling Developmental Toxicity in Testis
93	124	10:00-11:30 am 4:30 - 6:00 pm	Natalia Hassan Kevin Ling	Influence of protein corona formation onto gold nanoparticles in a dynamic regime by microfluidic devices Developing Perfusable Choriocapillaris for an Outer Retinal Blood Barrier-on-a-Chip
95	126	10:00-11:30 am	Ana Mora-Boza	Photopatterned synthetic hydrogels for perfusable gut-on-a-chip systems
96	127	4:30 - 6:00 pm	Hendrik Erfurth	Automation of Multi-Organ-Chip Assays
97	128	10:00-11:30 am	Yuji Nashimoto	Real-time monitoring of the effects of vasculature in a tumor microenvironment
98 99	130 131	4:30 - 6:00 pm 10:00-11:30 am	Dhimas Agung Kurniawan	Elucidating Normal Liver-Small Intestine Interactions in terms of Drug Metabolism using On-Chip Perfused and Direct Oxygenated MPS Utilizing human cardiac organoids as multipurpose tool to study cardiac pathophysiology in vitro
100	132	4:30 - 6:00 pm	Elisa Mohr Benoit Cox	A human multi-organ chip combining human liver and blood-brain barrier to predict drug pharmacokinetics and metabolite distribution
101	133	10:00-11:30 am	Mohammad Jouybar	Round lumen-based microfluidic devices for modelling cancer metastasis
102	134	4:30 - 6:00 pm	Sirjana Pun	A 3D-Bioprinted Microfluidic Model of Human Glioblastoma for Investigating Tumor Heterogeneity and Drug Resistance
103	135	10:00-11:30 am	Anke Tukker	Development of Electrochemical Sensors to Measure Glutamate Kinetics in Vitro
104 105	139 140	4:30 - 6:00 pm 10:00-11:30 am	Julio César Sánchez-Rendón Deborah Ramsey	Apically applied shear stresses impact the rheotactic behavior, physical forces, and transcriptomic profile of three different endothelial cell types Evaluation of Metastatic Tumor Migration and Invasion of Secondary Sites using a Vascularized Tumor-on-Chip Model
106	142	4:30 - 6:00 pm	Katherine Marshall	Modeling corticospinal tract pathophysiology with ALS iPSC-derived corticospinal motor neurons
107	143	10:00-11:30 am	Hyemin Kim	Human induced pluripotent stem cell-derived hepatic organoids as an alternative in vitro model for toxicity testing
108	144	4:30 - 6:00 pm	Moo-Yeal Lee	Pillar and Perfusion Plate Enhanced Cell Growth, Reproducibility, Throughput, and User Friendliness in Dynamic 3D Cell Culture
109	145	10:00-11:30 am 4:30 - 6:00 pm	Masaya Hagiwara	Integration platform for organoids and organ-on-a-Chip by modularized technologies to control and sensing microenvironments with CUBE Multiplexed Superfusion System for Physiological Emulation: from Concept to Product
110 111	147 148	4:30 - 6:00 pm 10:00-11:30 am	Xumei Gao Matt Howes	Multiplexed Superfusion System for Physiological Emulation: from Concept to Product HepG2 Cells as a Cell Model for Studying Acute Hepatotoxicity in The Emulate Organ Chip System
112	150	4:30 - 6:00 pm	Kendy Eduardo Urdaneta	Angiogenesis-on-chip: hiPSC-derived Endothelial cell-line dependent angiogenic responses.
113	151	10:00-11:30 am	Jasper Koning	Vascularization of multi-Organ-on-Chips with blood and lymphatic endothelial cells for the generation of immunocompetent skin models
114	152	4:30 - 6:00 pm	Ulgu Arslan	Vascularized hiPSC-derived 3D cardiac microtissue on chip
115 116	153 154	10:00-11:30 am 4:30 - 6:00 pm	Maria Anna Chliara Behnam Amiri	Bioprinting in organ-on-chip for studying cancer metastasis in lymphatic vessels A quantitative modeling workflow for the design, analysis, and interpretation of experimental studies in gut-liver organ-on-a-chip systems.
116	154	4:30 - 6:00 pm 10:00-11:30 am	Laura D'Ignazio	A quantitative modeling worknow for the design, analysis, and interpretation of experimental studies in gut-liver organ-on-a-chip systems. Enabling next generation functional characterization of human neural organoids
118	156	4:30 - 6:00 pm	Sofia Gomez	Towards improving maturation of 3D muscle-like constructs using cyclic mechanical strain in a pneumatically actuated platform
119	158	10:00-11:30 am	Dennis M. Nahon	Enhanced vascular organization in a vessel-on-chip model containing hiPSC-derived astrocytes
120	159	4:30 - 6:00 pm	Chak Hon Luk	Engineering an Immunocompetent induced Pluripotent Stem Cell-derived Alveolus-on-Chip to model Infection
121 122	160 161	10:00-11:30 am 4:30 - 6:00 pm	Ainhoa Ferret-Miñana Maria Teresa Baltazar	Human three-dimensional multicellular liver platform for drug screening The application of advanced tools in Next Generation Risk Assessment (NGRA) of cosmetics ingredients
123	162	10:00-11:30 am	Chantal Rufer	A Novel Islet Platform for Studying Type 1 Diabetes and Investigating β-Cell Proliferation
124	163	4:30 - 6:00 pm	Sayro Jawurek	Developing Novel Tools for Diabetes Research: AAV Serotype Tropism Screen in Standardized Human Islet Microtissues
125	164	10:00-11:30 am	Lotte de Winde	Development of human B-cell lymphoma-on-chip to study cancer dissemination
126	165	4:30 - 6:00 pm	[No author data]	Overcoming oxygen impermeability in PDMS-free organ-on-a-chip devices with nanoporous plastics
127 128	166 168	10:00-11:30 am 4:30 - 6:00 pm	Manuel Allwang Nadine Nottrodt	Butyrate improves host defense against Candida albicans infections in an Inflammatory-bowel-disease on chip model Laser assisted bioprinting of spheroids for the fabrication of organoids in microfluidic chips
129	169	10:00-11:30 am	Kayoko Hirayama-Shoji	Perfusable liver model for "on chip" disease modelling
130	170	4:30 - 6:00 pm	Sinéad Connolly	Microfabrication of In Situ Functional Neuronal Networks using FluidFM for Spheroid Placement
131	171	10:00-11:30 am	Jia-Jun Yeh	Micropumping chip module for a standardized and modular Organ-on-Chip platform
132 133	173 174	4:30 - 6:00 pm 10:00-11:30 am	Dominika Schrödter Priscilla Lee	NeuroExaminer 2.0 – microfluidics made entirely of glass for monitoring Zebrafish brain activity using light-sheet imaging Utilizing Bioprinting Technology To Develop A 3D In Vitro Liver Model
134	175	4:30 - 6:00 pm	Adrian Feile	3D-gut-on-chip infection model of Vibrio cholerae
135	177	10:00-11:30 am		
136	178			
137	179	4:30 - 6:00 pm	Naomi Coombes	Development and adaptation of a SARS-CoV-2 infection model in human respiratory MPS at high containment
138		10:00-11:30 am	Francesca Moretti	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury
120	180	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets
139	180 182	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Francesca Moretti Juan M. Fernández-Costa Simone Smink	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development
139 140	180	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets
140 141	180 182 183 184	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip; joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes.
140 141 142	180 182 183 184 185	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system
140 141 142 143	180 182 183 184 185 186	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane
140 141 142	180 182 183 184 185	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system
140 141 142 143 144 145 146	180 182 183 184 185 186 187 189	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Jansmin Orge Andre Rodrigues	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development.
140 141 142 143 144 145 146 147	180 182 183 184 185 186 187 189 190	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte lasmim Orge Andre Rodrigues Nikolas Gaio	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT
140 141 142 143 144 145 146 147	180 182 183 184 185 186 187 189 190 191 191	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip; joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components.
140 141 142 143 144 145 146 147 148	180 182 183 184 185 186 187 189 190 191 192 193	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schultte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Kai-Lan Lin	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized storma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling
140 141 142 143 144 145 146 147	180 182 183 184 185 186 187 189 190 191 191	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip; joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components.
140 141 142 143 144 145 146 147 148 149 150 151	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier
140 141 142 143 144 145 146 147 148 149 150 151 152	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues
140 141 142 143 144 145 146 147 148 149 150 151	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s
140 141 142 143 144 145 146 147 148 149 150 151 152	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less
140 141 142 143 144 145 146 147 148 149 150 151 152 153	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 199	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 199 200 201 202	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Sai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation OoC (rOoC) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Characterisation of primary NHP
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 199 200 201 202 203	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized storma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation OOC (rOoC) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Characterisation of primary NHP
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 199 200 201 202 203 204	10:00-11:30 am 4:30 - 6:00 pm 10:00-11:30 am	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation OoC (rOoC) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Characterisation of primary NHP
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 199 200 201 202 203	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation OoC (POOC) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Characterisation of primary NHP
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159	180 182 183 184 185 186 187 189 191 191 192 193 194 195 196 197 199 200 201 202 203 204 205	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Nikolas Gaio Sehoon Jeong Sehoon Jeong Sehoon Jeong Alexandre Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt Svenja Nellinger	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation OoC (rOoC) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Characterisation of primary NHP
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 200 201 202 203 204 205 206 207 211	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt Svenja Nellinger Mahira Mehanovic Tom Pietrobelli Diana Karwelat	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation of C(roC) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Characterisation of primary NHP
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 199 200 201 202 203 204 205 206 207 211 212	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Nikolas Gaio Sehoon Jeong Sehoon Jeong Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt Svenja Nellinger Mahira Mehanovic Tom Pietrobelli Diana Karwelat Iris Muller	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip; joining a functional patient-derived 30 skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 30 organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-chip (DoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation OOC (rOCC) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Characterisation of primary NHP
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 199 200 201 202 203 204 205 206 207 211	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schultte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt Svenja Nellinger Mahira Mehanovic Tom Pietrobelli Diana Karwelat Iris Muller Massimo Mastrangeli	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Yascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OCC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation of primary NIPP airway cells for MPS infection model development Next-generation human iPSC-derived 3D brain systems to study chemical-induced myelin disrupt
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 199 200 201 202 203 204 205 206 207 211 212	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Nikolas Gaio Sehoon Jeong Sehoon Jeong Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt Svenja Nellinger Mahira Mehanovic Tom Pietrobelli Diana Karwelat Iris Muller	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip; joining a functional patient-derived 30 skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 30 organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-chip (DoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation OOC (rOCC) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Characterisation of primary NHP
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 165	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 199 200 201 202 203 204 205 206 207 211 213 215 218	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt Svenja Nellinger Mahira Mehanovic Tom Pietrobelli Diana Karwelat Iris Muller Massimo Mastrangeli Christopher Arian	Comparative assessment of hepatic in vitro systems for detection of drug-induced liver injury A multi-organ-on-a-chip device to study the metabolic crosstalls between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip; pioning a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (OCC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation OoC (COCC) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Characterisation of primary NH
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 200 201 202 203 204 205 206 207 211 212 213 215 217	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt Svenja Nellinger Mahira Mehanovic Tom Pietrobelli Diana Karwelat Iris Muller Massimo Mastrangeli Christopher Arian Jens Buru Douglas Kondro Mindaugas Pauzuolis	A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-chip (DOC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in wito corneal tissues No improvement in 60 years: during failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation Organo human in PSC-derived 3D brain systems to study chemical-induced myelin disruption and demyelinating diseases Downscaled Engineered Heart Tissues of entirely hilPSC-derived 3D-rain duded evelopmen
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 166 167 168 169 170	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 200 201 202 203 204 205 206 207 211 212 213 215 217 218	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Janschulte Janschulte Jasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Selos Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt Svenja Nellinger Mahira Mehanovic Tom Pietrobelli Diana Karwelat Iris Muller Massimo Mastrangeli Christopher Arian Jens Duru Douglas Kondro Mindaugas Pauzuolis Amanzhol Kurmashev	A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip development DMD-on-a-chip; joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-chip parry Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-Chip (DoC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in vitro corneal tissues No improvement in 60 years: drug failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation Oc (1900c) platform. Establishing a patient-derived glioblastoma organoids model that mimics tumor heterogeneity in patients Character
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 166 167 168 169	180 182 183 184 185 186 187 189 190 191 192 193 194 195 196 200 201 202 203 204 205 206 207 211 212 213 215 217	10:00-11:30 am 4:30 - 6:00 pm	Francesca Moretti Juan M. Fernández-Costa Simone Smink Ainoa Tejedera-Villafranca Emily Tubbs Karin Farah Rechberger Tobias Weber Jan Schulte Iasmim Orge Andre Rodrigues Nikolas Gaio Nikolas Gaio Nikolas Gaio Kai-Lan Lin Beatrice Gabbin Mariel Cano-Jorge Sehoon Jeong Karen Dernick Dilyana Filipova Aleksandra Aizenshtadt Vanesa Ayala-Nunez Naomi Coombes Shan Wang Laura Windt Svenja Nellinger Mahira Mehanovic Tom Pietrobelli Diana Karwelat Iris Muller Massimo Mastrangeli Christopher Arian Jens Buru Douglas Kondro Mindaugas Pauzuolis	A multi-organ-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets A novel integrated approach for proximal tubule-on-a-chip device to study the metabolic crosstalk between muscle and pancreatic islets DMD-on-a-chip: joining a functional patient-derived 3D skeletal muscle model, microfluidics and nanoplasmonic sensing to accelerate drug testing for Duchenne Muscular Dystrophy Vascularized pancreatic islet-on-chip for type 1 diabetes. Exploring extravasation dynamics of lung cancer cells using a microvasculature-on chip system A Breathing Lung-on-Chip Array Incorporating a Protein-Based Membrane Incorporating primary human epithelial cells on a novel alveoli-on-chip device with diverse strain distribution Perfusable vascularized stroma on-a-chip for growing 3D organotypic structures Validation of 3D human liver-on-chip model as standard assay for ADME and Toxicity predictions during pre-clinical development. Quantitative fluid dynamic characterization of an organ-on-chip model using phase resolved Doppler OCT Automated and high-volume wafer-scale microfabrication of Organ-on-chip (DOC) polymer structures and components. 3D chip model to study cellular interplay in cancer cell invasion through Notch signaling Unified organoid system for modeling heart and kidney interaction on-a-chip Engineered human cardiac chambers recapitulating the pump function of the heart Organ-on-a-chip: Technology for the Interface between the Brain and the Blood-brain Barrier Corneal toxicity screening: Successful replacement of rabbits by human in wito corneal tissues No improvement in 60 years: during failure rates from the 1960s to the 2010s Modeling of obesity-induced changes in metabolism and crosstalk of human stem cell-derived pancreatic islets and liver organoids using a pump-less recirculation Organo human in PSC-derived 3D brain systems to study chemical-induced myelin disruption and demyelinating diseases Downscaled Engineered Heart Tissues of entirely hilPSC-derived 3D-rain duded evelopmen

173	223	10:00-11:30 am	Pierre Gaudriault	A high-throughput vascularized immunocompetent organoids on well: application on immuno-oncology for breast cancer
174	224	4:30 - 6:00 pm	Hristina Koceva	Generation of an alveolus-on-chip model for personalized drug screening against viral-bacterial co-infections in viral pneumonia
175	225	10:00-11:30 am	Rouhollah Habibey	Long-term modular human iPSC-derived neuronal networks on-chip
176	226	4:30 - 6:00 pm	Isabel Tamargo-Rubio	From hiPSC-derived liver organoids to hiPSC-derived liver-on-chip: enhancing cytochrome P450 expression for drug metabolism studies
177	229	10:00-11:30 am	Carles Calatayud	Building Human Induced Nigrostriatal Microcircuits on CMOS chips to Study Parkinson's Disease
178	230	4:30 - 6:00 pm	Mona Amiratashani	The next generation of iPSCs alveolus-on-chip: Combine flexible collagen-I membranes, mechanobiological stimulation, and a human pneumonia model infection
179	231	10:00-11:30 am	Rohollah Nasiri	Investigation on the Effect of Ketogenic diet on human Neurovascular Unit-on-a-Chip: Brain Energy Metabolism with different Diets
180	234	4:30 - 6:00 pm	Patrícia Barros da Silva	A bioactive hybrid dECM-alginate system to unveil the role of the microenvironment in EMT/MET
181	235	10:00-11:30 am	JEON SOOYEON	Toll-like receptors and organ-on-chip approaches for AD drug screening
182	236	4:30 - 6:00 pm	Xumei Gao	Hyper-nutritional cell culture media distort the expression of anti-cancer drug targets
183	239	10:00-11:30 am	SEJEONG OH	A study on derivation of standardization items in organ-on-chip
184	241	4:30 - 6:00 pm	Fumiya Tokito	Development of an in vitro liver culture system for continuous bile recovery
185	242	10:00-11:30 am	Mark Greenough	RealBrain® 3D neural micro-tissues: a high throughput platform for drug discovery in Alzheimer's disease and other neurodegenerative disorders
186	243	4:30 - 6:00 pm	Valentin Wegner	Testing short-chain fatty acid effects on the efficacy of CAR T cells in a gut-on-chip system
187	244	10:00-11:30 am	Mayu Shibuta	Construction of a blood-brain barrier (BBB)-on-chip model that can evaluate immune cell infiltration and barrier disruption